

I

www.createconsultingengineers.co.uk

APPENDIX D

IoH 124 Calculation of Greenfield Runoff Rate

Project:	P22-2590 McDonalds Haverhill									
FIOJECI.										
OS Location	567720	E	244240	Ν						
Date:	14.04.22									
Written By:	TT	Chec	ked By:	GS						

Qbar_{rural} = 0.00108 x (AREA)0.89 X (SAAR)1.17 X (SOIL)2.17

Qbar-50ha = $0.137 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 6

Return period	1	2	5	10	25	30	50	100	500
Growth Factor	0.85	0.88	1.28	1.62	2.14	2.24	2.62	3.19	4.49

Q ₁ 50ha =	0.116	m ³ /s	=	116.27	l/s	=	2.325	l/s/ha
Q ₂ 50ha =		m³/s	=	120.38	l/s	=	2.408	l/s/ha
Q₅ 50ha =		m³/s	=	175.09	l/s	=	3.502	l/s/ha
Q ₁₀ 50ha =		m³/s	=	221.60	l/s	=	4.432	l/s/ha
Q ₂₅ 50ha =		m³/s	=	292.74	l/s	=	5.855	l/s/ha
Q ₃₀ 50ha =		m ³ /s	=	306.42	l/s	=	6.128	l/s/ha
Q ₅₀ 50ha =	0.358	m ³ /s	=	358.40	l/s	=	7.168	l/s/ha
Q ₁₀₀ 50ha =	0.436	m ³ /s	=	436.37	l/s	=	8.727	l/s/ha
Q ₅₀₀ 50ha =	0.614	m ³ /s	=	614.20	l/s	=	12.284	l/s/ha

Factored for Development Impermeable Area

Site Area = 0.453

Q _{bar} site =	0.001	3/2	=	1.2	l/s	=	2.7	l/s/ha
		m [°] /s						
Q ₁ site =		m³/s	=	1.1	l/s	=	2.3	l/s/ha
Q ₂ site =		m³/s	=	1.1	l/s	=	2.4	l/s/ha
Q₅site =		m³/s	=	1.6	l/s	=	3.5	l/s/ha
Q ₁₀ site =		m³/s	=	2.0	l/s	=	4.4	l/s/ha
Q ₂₅ site =		m³/s	=	2.7	l/s	=	5.9	l/s/ha
Q ₃₀ site =		m ³ /s	=	2.8	l/s	=	6.1	l/s/ha
Q ₅₀ site =		m ³ /s	=	3.2	l/s	=	7.2	l/s/ha
Q ₁₀₀ site =		m ³ /s	=	4.0	l/s	=	8.7	l/s/ha
Q ₅₀₀ site =	0.006	m³/s	=	5.6	l/s	=	12.3	l/s/ha

Note: For greenfield site, the critical duration is generally not relevant and the prediction of the peak rate of runoff using IoH124 does not require consideration of storm duration.

APPENDIX E

Create Consulting Engineers

File: 220727 Storm Network.pf Network: Storm Network Scott Walker 28/07/2022 Page 1 McDonalds Havehill 30 Year + 20% 100 Year + 40%

Design Settings

Rainfall Methodology	FEH-13	Minimum Velocity (m/s)	1.00
Return Period (years)	2	Connection Type	Level Soffits
Additional Flow (%)	0	Minimum Backdrop Height (m)	0.200
CV	0.750	Preferred Cover Depth (m)	1.200
Time of Entry (mins)	5.00	Include Intermediate Ground	\checkmark
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	\checkmark
Maximum Rainfall (mm/hr)	5.0		

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
Storage Crates 1		5.00	76.266		567609.964	244290.261	3.816
1	0.047	5.00	76.300	1200	567660.952	244293.270	2.060
2	0.064	5.00	76.470	1200	567645.098	244286.488	1.425
3	0.000		76.450	1200	567637.164	244293.612	2.370
4	0.065	5.00	76.300	1200	567600.282	244254.370	1.425
5	0.019	5.00	76.450	1200	567609.278	244266.792	1.050
6	0.021	5.00	76.250	1200	567604.220	244276.571	1.525
7	0.000		76.400	1200	567611.652	244280.416	3.000
8	0.030	5.00	74.540	1200	567691.358	244327.139	1.425
9	0.055	5.00	75.540	1200	567657.359	244324.084	2.705
10	0.014	5.00	76.450	1200	567599.173	244310.968	3.895
11	0.022	5.00	76.470	1200	567601.377	244299.918	3.965
HB1	0.117	5.00	76.300	1200	567607.286	244288.856	3.860
13	0.000		76.335	1200	567591.639	244280.762	4.080
14	0.000		76.450	1200	567588.316	244287.186	4.370
15	0.000		76.500	1200	567582.823	244312.381	4.680
16	0.000		76.500	1200	567591.690	244349.865	5.065
MH5323	0.000		72.160	1200	567593.204	244356.360	1.500

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
2.000	1	3	23.790	0.600	74.240	74.080	0.160	149.0	225	5.37	5.0
3.000	2	3	10.663	0.600	75.045	74.980	0.065	164.0	225	5.17	5.0
2.001	3	7	28.723	0.600	74.080	73.475	0.605	47.5	225	5.62	5.0
4.000	4	6	22.548	0.600	74.875	74.725	0.150	150.0	225	5.35	5.0
5.000	5	6	11.010	0.600	75.400	74.800	0.600	18.3	150	5.08	5.0
4.001	6	7	8.368	0.600	74.725	74.670	0.055	153.0	225	5.49	5.0
2.002	7	HB1	9.502	0.600	73.400	72.515	0.885	10.7	225	5.66	5.0

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
2.000	1.069	42.5	0.6	1.835	2.145	0.047	0.0	19	0.383
3.000	1.018	40.5	0.9	1.200	1.245	0.064	0.0	22	0.408
2.001	1.903	75.7	1.5	2.145	2.700	0.111	0.0	22	0.748
4.000	1.065	42.3	0.9	1.200	1.300	0.065	0.0	22	0.427
5.000	2.362	41.7	0.3	0.900	1.300	0.019	0.0	8	0.642
4.001	1.054	41.9	1.4	1.300	1.505	0.105	0.0	29	0.494
2.002	4.016	159.7	2.9	2.775	3.560	0.216	0.0	21	1.545

$ \begin{split} \text{Figure 1} & \text{Figure 1}$	Name US DS Length ks (mm) Node <		SEWAY 🜍		Consulti	ing Er	ngineers	Netw Scott		torm Net m Netwo	-	Page 2 McDona 30 Year 100 Year	+ 20%	hill
Node Node (m) (m) </th <th>Node Node (m) (m)<!--</th--><th></th><th></th><th></th><th></th><th></th><th><u> </u></th><th><u>Links</u></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	Node Node (m) (m) </th <th></th> <th></th> <th></th> <th></th> <th></th> <th><u> </u></th> <th><u>Links</u></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						<u> </u>	<u>Links</u>						
1001 9 10 59.646 0.600 72.555 72.555 0.280 213.0 300 6.49 5.0 1.002 10 11 112.641 0.600 72.555 72.555 0.505 320 6.67 5.0 1.004 HB1 13 17.617 0.600 72.555 72.140 0.005 150 7.14 5.0 1.005 13 14 7.23 0.600 72.555 71.80 0.75 96.4 150 7.26 5.0 1.005 14 15 25.787 0.600 72.557 72.60 0.07 5.6 150 8.32 5.0 1.006 16 MH5323 6.669 0.600 71.435 0.385 100.0 150 8.33 5.0 1.008 16 MH5323 6.669 0.600 72.440 0.010 30.24 300 5.06 5.0 1.001 1.010 4.02 0.4 1.200 2.450 5.0301 0.0 150 3.331 1.001 1.021 <t< th=""><th>1001 9 10 59,646 0.600 72,555 72,555 0.280 213.0 300 6.49 5.0 1.002 10 11 11,264 0.600 72,555 72,555 0.505 225.0 300 6.49 5.0 1.003 11 HB1 13 17,617 0.600 72,255 72,160 0.005 150 7.14 5.0 1.005 13 14 7,233 0.600 72,255 71,820 0.260 992 150 7.66 5.0 1.006 14 15 25,787 0.600 71,435 0.385 100.0 150 8.32 5.0 1.003 16 MH5323 6.669 0.600 71,435 0.385 100.0 150 8.35 5.0 1.003 1.01 1.010 0.02 0.4 1.200 71,440 0.010 30.2 4.30 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0</th><th>Name</th><th></th><th></th><th>-</th><th></th><th>• • •</th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th></t<>	1001 9 10 59,646 0.600 72,555 72,555 0.280 213.0 300 6.49 5.0 1.002 10 11 11,264 0.600 72,555 72,555 0.505 225.0 300 6.49 5.0 1.003 11 HB1 13 17,617 0.600 72,255 72,160 0.005 150 7.14 5.0 1.005 13 14 7,233 0.600 72,255 71,820 0.260 992 150 7.66 5.0 1.006 14 15 25,787 0.600 71,435 0.385 100.0 150 8.32 5.0 1.003 16 MH5323 6.669 0.600 71,435 0.385 100.0 150 8.35 5.0 1.003 1.01 1.010 0.02 0.4 1.200 71,440 0.010 30.2 4.30 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	Name			-		• • •				-			
1002 10 11 11.268 0.600 72.555 72.505 0.050 225.0 300 6.67 5.0 1.003 11 HB1 12.541 0.600 72.405 72.440 0.055 192.9 300 6.67 5.0 1.004 HB1 13 17.617 0.600 72.440 72.555 71.44 5.0 150 7.26 5.0 1.005 13 14 7.233 0.600 72.425 72.180 0.20 99.2 150 7.26 5.0 1.007 15 16 38.518 0.600 72.457 72.640 0.010 302.4 300 5.0 5.0 0.000 Storage Crates 1 HB1 3.024 0.000 72.457 0.600 0.77.5 8.6 10.02 5.0 1.000 1.010 40.2 0.4 1.200 2.405 3.995 0.085 0.0 2.2 3.00 4.51 1.00 30 0.454 1.000 1.014 1.23 1.3 3.595 3.650 0.0	1002 10 11 11.268 0.600 72.555 72.505 0.005 225.0 300 6.67 5.0 1.003 11 HB1 12.541 0.600 72.405 72.440 0.055 192.9 300 6.67 5.0 1.004 HB1 13 17.617 0.600 72.440 72.255 0.185 95.0 150 7.14 50 1.005 13 14 7.233 0.600 72.255 72.80 0.20 92.2 150 7.26 5.0 1.005 16 38.518 0.600 72.257 72.40 0.010 302.4 300 5.0 1.008 16 MH5323 6.669 0.600 72.457 72.40 0.010 302.4 300 5.0 1.000 1.010 40.2 0.4 1.200 2.405 3.595 0.085 0.0 25 0.391 1.001 1.073 75.9 1.2 2.405 3.595 0.085 0.0 25 0.391 1.002 1.047		-	-										
103 11 HB1 12.541 0.600 72.505 72.440 0.065 192.9 300 6.85 5.0 1.004 HB1 13 17.617 0.600 72.255 0.185 95.0 150 7.14 5.0 1.005 13 1.44 7.233 0.600 72.255 0.185 95.0 150 7.68 5.0 1.007 15 16 38.318 0.600 71.820 71.45 0.385 100.0 150 8.32 5.0 1.008 16 MH5323 6.669 0.600 71.435 77.64 0.010 302.4 300 5.06 5.0 0.000 Storage Crates 1 HB1 3.024 0.600 72.450 72.440 0.010 302.4 300 5.06 5.0 1.000 1.010 40.2 0.4 1.200 2.405 0.030 0.0 16 0.327 1.001 1.021 1.021 1.031 1.128 7.97 1.2 2.405 5.030 0.0 0.0 0.434 1.0	1001 11 HB1 12.541 0.600 72.540 0.065 192.9 300 6.85 5.0 1.004 HB1 13 17.617 0.600 72.255 0.185 95.0 150 7.14 5.0 1.005 13 1.4 7.233 0.600 72.255 0.185 95.0 150 7.68 5.0 1.007 15 16 38.318 0.600 71.435 71.445 0.381 100.0 150 8.35 5.0 1.008 16 MH5323 6.669 0.600 71.435 77.640 0.010 302.4 300 5.06 5.0 0.000 Storage Crates 1 HB1 3.024 0.600 72.450 72.440 0.010 302.4 300 5.06 5.0 1.000 1.010 40.2 0.4 1.200 2.405 0.391 0.01 302.7 1.001 1.021 1.0103 1.022 1.0103 1.022 1.021 0.0 30 0.454 1.003 1.031 1.128 7.16 3.65													
1.004 HB1 13 17.617 0.600 72.440 72.255 0.185 95.0 150 7.14 5.0 1.005 14 15 25.787 0.600 72.255 72.180 0.075 96.4 150 7.265 5.0 1.007 15 16 38.518 0.600 71.820 7.266 99.2 150 7.68 5.0 1.008 16 MH5323 6.699 0.600 71.435 0.7660 0.775 8.6 150 8.35 5.0 6.000 5torage Crates 1 HB1 3.024 0.600 72.450 72.440 0.010 302.4 300 5.06 5.0 6.000 1.001 1.002 0.4 1.200 2.405 0.330 0.0 16 0.337 1.001 1.003 1.023 1.3 3.595 3.655 0.099 0.2 8.0403 1.001 1.003 1.128 70.7 1.6 3.650 0.0121 0.0 30 0.0 1.00 1.001 1.0173 72.01 1.003 1.28	1.004 HB1 13 17,617 0,600 72,2440 72,255 0,185 95.0 150 7.14 5.0 1.005 13 14 7,233 0,600 72,255 72,140 0,075 96.4 150 7.268 5.0 1.005 14 15 25,772 0,600 77,280 71,432 0,260 99.2 150 7.268 5.0 1.005 15 16 38,518 0,600 77,2450 72,440 0,010 302.4 300 5.06 5.0 0.000 Storage Crates 1 HB1 3.024 0,600 72,450 72,440 0,010 302.4 300 5.06 5.0 0.001 1.010 1,020 0,40 1,200 2,405 3.595 0.085 0.0 16 0,327 1.002 1,010 1,017 75.9 1,2 2,405 3.595 0.085 0.0 2.8 0,403 1.002 1,014 7.2 1.3 3.595 3.665 0.000 0 0.25 1.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
1.005 13 14 7.233 0.600 77.255 77.180 0.075 96.4 150 7.265 5.0 1.006 14 15 25.787 0.600 77.286 0.71.820 0.260 99.2 150 7.68 5.0 1.007 15 16 38.518 0.600 71.435 71.455 0.385 1000 150 8.32 5.0 6.000 Storage Crates 1 HB1 3.024 0.600 72.450 72.440 0.010 302.4 300 5.06 5.0 Name Vel Cap Flow US Date Zate Zato 0.001 302.4 300 5.06 5.0 Name Vel Cap Flow US Date Zato 0.001 302.4 300 5.06 5.0 Name Vel Cap Flow US Zate Zato 0.00 0.01 6.0 3.23 5.0 5.0 Name Vel Cap 1.2 2.05 0.0	1.005 13 14 7.233 0.600 72.255 72.180 0.075 96.4 150 7.265 5.0 1.006 14 15 25.787 0.600 72.080 71.480 0.260 99.2 150 7.88 5.0 1.007 15 16 38.518 0.600 71.435 71.455 0.855 100 150 8.32 5.0 5.000 Storage Crates 1 HB1 3.024 0.600 72.450 72.440 0.010 302.4 300 5.06 5.0 Name Vel Cap Flow US Depth Pacto Pro Pro Pro Pro Pro Name 1.001 1.001 1.002 1.04 1.20 2.450 0.030 0.0 16 0.337 1.01 1.02 1.041 73.7 1.6 3.665 3.560 0.021 0.0 28 0.403 1.00 1.00 1.03 1.12 7.0 3.930 0.454 0.0 61 0.916 1.007 1.003 1.81 <td></td>													
1.005 14 15 25.787 0.600 72.080 71.820 0.250 9.92 150 7.682 5.0 1.007 15 16 38.518 0.600 71.820 71.435 0.385 100.0 150 8.35 5.0 6.000 Storage Crates 1 HB1 3.024 0.600 72.480 72.440 0.010 302.4 300 5.06 5.0 Name Vel Cap Flow US DS E Area E Add Pro Pro Pro Pro Pro Name Vel Cap Flow US DS E Area E Add Pro Pro Pro Pro Name Name Vel Cap Flow US DS E Area E Add Pro Pro Pro Pro Name Name Vel Cap Flow US DS E Area E Add Pro Pro Pro Name Name <td>1.005 14 15 25.787 0.600 72.080 71.820 0.220 9.92 150 7.682 5.0 1.007 15 16 38.518 0.600 71.820 71.435 0.385 100.0 150 8.35 5.0 6.000 Storage Crates 1 HB1 3.024 0.600 72.450 72.440 0.010 302.4 300 5.06 5.0 Name Vel Cap Flow US DS X Area X Add Pro Pro Pro Name (m/s) (l/s) (mm) (l/s) (mm) (m/s) (l/s) 1.00 1.010 40.2 0.4 1.200 2.405 0.030 0.0 16 0.327 1.00 1.001 1.073 75.9 1.2 2.405 3.595 0.085 0.0 2.5 0.391 1.002 1.047 3.81 3.595 5.06 0.00 0 0.30 0.454 1.00 1.005 1.203 1.81 6.2 3.501 0.454 0.0 61 0.912 1.005</td> <td></td>	1.005 14 15 25.787 0.600 72.080 71.820 0.220 9.92 150 7.682 5.0 1.007 15 16 38.518 0.600 71.820 71.435 0.385 100.0 150 8.35 5.0 6.000 Storage Crates 1 HB1 3.024 0.600 72.450 72.440 0.010 302.4 300 5.06 5.0 Name Vel Cap Flow US DS X Area X Add Pro Pro Pro Name (m/s) (l/s) (mm) (l/s) (mm) (m/s) (l/s) 1.00 1.010 40.2 0.4 1.200 2.405 0.030 0.0 16 0.327 1.00 1.001 1.073 75.9 1.2 2.405 3.595 0.085 0.0 2.5 0.391 1.002 1.047 3.81 3.595 5.06 0.00 0 0.30 0.454 1.00 1.005 1.203 1.81 6.2 3.501 0.454 0.0 61 0.912 1.005													
1.007 15 16 38.518 0.600 71.435 0.385 10.00 150 8.32 5.0 1.008 16 MH5323 6.669 0.600 71.435 70.660 0.775 8.6 150 8.32 5.0 6.000 Storage Crates 1 H81 3.024 0.600 72.450 72.440 0.101 302.4 300 5.06 5.0 Name Vel Cap Flow US DS Exerce X.4d0 Pro Pro (rs) 1.00 302.4 300 5.0 5.0 Name Vel Cap Flow US DS Exerce X.4d0 Pro Pro (rs) (rs) 1.01 30.7 3.13 3.595 3.665 0.09 0.0 2.6 0.331 1.03 1.22 2.405 3.595 0.085 0.0 2.6 0.331 1.03 1.28 2.420 4.510 0.454 0.0 60 0.932 1.005 1.032 1.81 6.2 4.320 4.544 0.0	1.007 15 16 38.518 0.600 71.435 0.385 10.00 150 8.32 5.0 1.008 16 MH5323 6.669 0.600 71.435 70.660 0.77.8 6.100 302.4 300 5.0 5.0 Name Vel Cap Flow US DS E Area E Add Pro Pro (r/s) (r/s) 1.00 302.4 300 5.0 5.0 Name Vel Cap Flow US DS E Area E Add Pro Pro (r/s) 1.00 302.4 300 5.0 5.0 Name Vel Cap Flow US DS E Area E Add Pro Pro (r/s) (r/s) 1.01 1.03 1.3 1.3 3.595 3.665 0.09 0.0 2.6 0.331 1.1 1.03 1.22 2.405 3.590 0.454 0.0 61 0.912 1.005 1.23 1.01 1.005 1.23 1.01 1.00 1.01 </td <td></td>													
1.003 16 MH5323 6.669 0.600 71.435 70.660 0.775 8.6 150 8.35 5.0 6.000 Storage Crates 1 HB1 3.024 0.600 72.450 72.440 0.010 3.02.4 300 5.06 5.0 Name Vel Cap Flow US DS E Area E Add Pro Pro Pro Velocity (m/s) 1.00 1.001 1.001 4.02 0.4 1.200 2.405 0.030 0.0 16 0.327 1.02 1.002 1.044 73.8 1.3 3.595 0.085 0.0 2.5 0.391 1.002 1.044 73.8 1.6 6.65 3.500 0.012 1.00 3.0 0.454 0.0 60 0.932 1.005 1.031 18.2 6.2 3.930 4.420 0.454 0.0 61 0.912 1.008 3.455 6.1 6.2 4.915 1.350 0.454 0.0 61 0.912 1.008 3.60 6.00 2.60 0.00 0.00	1.003 16 MH5323 6.669 0.600 71.435 70.660 0.775 8.6 150 8.35 5.0 6.000 Storage Crates 1 HB1 3.024 0.600 72.450 72.440 0.010 3.02.4 300 5.06 5.0 Name Vel Cap Flow US DS Z.440 0.010 3.02.4 300 5.06 5.0 1.000 1.010 40.2 0.4 1.200 2.405 0.300 0.0 16 0.327 1.0 1.001 1.073 75.9 1.2 2.405 3.595 0.060 0.0 28 0.403 1.001 1.013 1.82 6.2 3.500 0.454 0.0 60 0.932 1.005 1.031 18.2 4.20 4.530 0.454 0.0 61 0.912 1.005 1.003 1.8 6.2 4.30 4.315 0.454 0.0 61 0.912 1.008 3.455 6.1 6.2 4.915 1.350 0.454 0.0 6													
6.000 Storage Crates 1 HB1 3.024 0.600 72.450 72.440 0.010 302.4 300 5.06 5.0 Name Vel Cap (m/s) Flow US DS X Area X Area X Add Pro Pro Velocity (m/s) (m/s) 1.000 1.010 40.2 0.4 1.200 2.405 0.030 0.0 16 0.327 1.001 1.007 75.9 1.2 2.405 3.595 0.085 0.0 25 0.391 1.002 1.044 73.8 1.3 3.595 3.665 0.09 0.0 2.8 0.403 1.004 1.031 18.2 6.2 3.710 3.930 0.454 0.0 60 0.932 1.005 1.023 1.86 6.2 4.530 4.915 0.454 0.0 61 0.912 1.003 3.455 61.1 6.2 4.930 4.915 0.454 0.0 0 0.000 Summer CV 0.750 Vision Mathion Btorage (mis) 4.00	6.000 Storage Crates 1 HB1 3.024 0.600 72.450 72.440 0.010 302.4 300 5.06 5.0 Name Vel Cap (m/s) Flow US (m) DS (m) EArea (m) EAdd (m) Pro (m/s) Pro Velocity (m/s) Pro (m/s) Pro Velocity (m/s) Pro (m/s) Pro Velocity (m/s) 1.000 1.010 40.2 0.4 1.200 2.405 3.595 0.085 0.0 25 0.391 1.001 1.007 75.9 1.2 2.405 3.595 0.085 0.0 25 0.391 1.002 1.044 73.8 1.3 3.595 3.665 0.09 0.0 2.8 0.403 1.004 1.031 18.2 6.2 3.710 3.930 0.454 0.0 61 0.912 1.005 1.033 1.86 6.2 4.530 4.915 0.454 0.0 61 0.912 1.006 1.039 1.8 6.2 4.530 4.915 0.454 0.0 0 0.0000 Summer CV													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Name	Vel	Cap Fl	low	US	DS	Σ Area	Σ Add	Pro	Pro		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			(m/s)	(I/s) (I	l/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity		
1.001 1.073 75.9 1.2 2.405 3.595 0.085 0.0 25 0.391 1.002 1.044 73.8 1.3 3.595 3.665 0.099 0.0 28 0.403 1.003 1.128 79.7 1.6 3.665 3.930 0.454 0.0 60 0.932 1.005 1.023 18.1 6.2 3.930 4.120 0.454 0.0 60 0.925 1.006 1.009 17.8 6.2 4.220 4.530 0.0454 0.0 61 0.912 1.006 1.007 7.8 6.2 4.915 1.350 0.454 0.0 61 0.912 1.008 3.455 61.1 6.2 4.915 1.350 0.454 0.0 32 2.219 6.000 0.899 63.5 0.0 3.516 3.560 0.00 0 0 0.000 Minter CV 0.750 Winter CV 0.840 Additional Storage (m³/ha) 0.0 Check Discharge Volume x 1.1 30 12	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						(m)	(m)		(I/s)	(mm)	(m/s)		
1.002 1.044 73.8 1.3 3.595 3.665 0.099 0.0 28 0.403 1.003 1.128 79.7 1.6 3.665 3.560 0.121 0.0 30 0.454 1.004 1.031 18.2 6.2 3.710 3.930 0.454 0.0 60 0.932 1.005 1.023 18.1 6.2 4.220 4.530 0.454 0.0 61 0.916 1.007 1.005 17.8 6.2 4.915 0.454 0.0 61 0.912 1.008 3.455 6.11 6.2 4.915 0.454 0.0 32 2.219 6.000 0.899 63.5 0.0 3.516 3.560 0.00 0 0.000 Simulation Settings Summer CV 0.750 Drain Down Time (mins) 240 Additional Storage (m ³ /ha) 0.0 Analysis Speed Normal 360 600 960 2160 4320 7200 10080 30 120 240 480	1.002 1.044 73.8 1.3 3.595 3.665 0.099 0.0 28 0.403 1.003 1.128 79.7 1.6 3.665 3.560 0.121 0.0 30 0.454 1.004 1.031 18.2 6.2 3.710 3.930 0.454 0.0 60 0.392 1.005 1.023 18.1 6.2 4.220 4.530 0.454 0.0 61 0.916 1.007 1.005 17.8 6.2 4.915 0.454 0.0 61 0.912 1.008 3.455 6.11 6.2 4.915 1.350 0.454 0.0 32 2.219 6.000 0.899 63.5 0.0 3.516 3.560 0.00 0 0.000 Winter CV 0.840 Additional Storage (m/Yha) 0.0 Check Discharge Rate(s) √ 1 Year (l/S) 1.1 Summer CV 0.750 Maditional Storage (m/Yha) 0.0 Check Discharge Rate(s) √ 10080 1 Year (l/S) 120		1.000	1.010	40.2	0.4	1.200	2.405	0.030	0.0	16	0.327		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
6.000 0.899 63.5 0.0 3.516 3.560 0.000 0.000 Simulation Settings Rainfall Methodology FEH-13 Skip Steady State x 1 year (l/s) 1.1 Summer CV 0.750 Drain Down Time (mins) 240 Additional Storage (m³/ha) 0.0 Check Discharge Rate(s) I check Discharge Volume x 15 60 180 360 600 960 2160 4320 7200 10080 30 120 240 480 720 1440 2880 5760 8640 10080 Comm Durations 100 40 0 0 0 0 0 30 120 240 480 720 1440 2880 5760 8640 10080 Comm Durations Comm Durations Comm Durations Comm Durations Comm Durations Sterm Durations Comm Durations Comm Durations	6.000 0.899 63.5 0.0 3.516 3.560 0.000 0.000 Simulation Settings Rainfall Methodology FEH-13 Skip Steady State x 1 year (l/s) 1.1 Summer CV 0.750 Drain Down Time (mins) 240 Additional Storage (m³/ha) 0.0 Check Discharge Volume x Minter CV 0.840 Additional Storage (m³/ha) 0.0 Check Discharge Rate(s) √ Check Discharge Volume x 15 60 180 360 600 960 2160 4320 7200 10080 30 120 240 480 720 1440 2880 5760 8640 10080 Otomore 30 120 240 480 720 1440 2880 5760 8640 10080 Otomore 30 20 0 0 0 0 0 0 30 20 0 0 0 0 0 0 0 0 0 0 0 <td></td>													
Rainfall MethodologyFEH-13 Summer CVSkip Steady Statex Drain Down Time (mins)1 year (l/s)1.1 Check Discharge VolumeMinter CV0.840 Analysis SpeedNormalAdditional Storage (m ³ /ha)0.0 Check Discharge Rate(s)Check Discharge VolumexStorm Durations15601803606009602160432072001008030120240480720144028805760864010080Pre-development Discharge Rate302000010040000Site Makeup Greenfield Greenfield MethodRegion6 Growth Factor 1 year0.85 Betterment (%)SAAR (mn)581 QBarQ1 year (l/s)1.1	Rainfall Methodology Summer CVFEH-13 0.750 Mvinter CVSkip Steady State Drain Down Time (mins)240 240 Additional Storage (m ³ /ha)1 year (l/s)1.1 Check Discharge Volume xMuinter CV0.840 Analysis Speed NormalAdditional Storage (m ³ /ha)0.0 Check Discharge Rate(s)Check Discharge Volume xTotal Check Discharge Volume x156018036060096021604320720010080301202404807201440288057608640301202404807201440288057608640302000000100400000Pre-development Discharge RateSite Makeup Greenfield Greenfield MethodRegion6 Growth Factor 1 year0.85 Betterment (%)SAAR (mn)581 QBarQBar1.2 Q 1 year (l/s)1.1													
Summer CV 0.750 Winter CVDrain Down Time (mins) 240 Additional Storage (m³/ha)Check Discharge VolumexMalysis SpeedNormalAdditional Storage (m³/ha) 0.0 Check Discharge Rate(s)Check Discharge Rate(s) $$ 15601803606009602160432072001008030120240480720144028805760864010080Return Period (years)Climate ChangeAdditional AreaAdditional Flow (QC %)302000010040000Site MakeupGreenfieldGreenfield MethodIH124 Bositively Drained Area (ha)Growth Factor 1 year0.85 Betterment (%)SAAR (mm)581 SAAR (mm)QBar1.2 Q 1 year (l/s)1.1	Summer CV 0.750 Winter CVDrain Down Time (mins) 240 Additional Storage (m³/ha)Check Discharge VolumexMalysis SpeedNormalAdditional Storage (m³/ha) 0.0 Check Discharge Rate(s)Check Discharge Volumex15 60 180 360 600 960 2160 4320 7200 10080 30 120 240 480 720 1440 2880 5760 8640 Return Period (years)Climate ChangeAdditional AreaAdditional Flow (QC %) 30 20 0 0 100 40 0 0 Dre-development Discharge RateSite Makeup Greenfield Greenfield MethodRegion 6 Growth Factor 1 year 0.85 Betterment (%) 0 0 SAAR (mm) 581 Soil Index $QBar$ 1.2						<u>Simulat</u>	tion Settin	<u>ngs</u>					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Summe Winter	r CV 0.7 r CV 0.8	50 40	Add	rain Dowr itional Sto	n Time (m prage (m³/	ins) 24 /ha) 0.(neck Discl			.1
301202404807201440288057608640Return Period (years)Climate Change (CC %)Additional Area (A %)Additional Flow (Q %)3020003020001004000Pre-development Discharge RateSite Makeup Greenfield MethodGreenfield H124 SAAR (mm)Region6 Growth Factor 1 year0SAAR (mm)581 Soil IndexQ1 year (I/s)1.1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						Storm	Duration	IS					
(years)(CC %)(A %)(Q %)3020001004000Pre-development Discharge RateSite MakeupGreenfieldRegion6Greenfield MethodIH124Growth Factor 1 year0.85Positively Drained Area (ha)0.454Betterment (%)0SAAR (mm)581QBar1.2Soil Index3Q 1 year (I/s)1.1	(years)(CC %)(A %)(Q %)3020001004000Pre-development Discharge RateSite MakeupGreenfieldRegion6Greenfield MethodIH124Growth Factor 1 year0.85Positively Drained Area (ha)0.454Betterment (%)0SAAR (mm)581QBar1.2Soil Index3Q 1 year (l/s)1.1												080	
1004000Pre-development Discharge RateSite MakeupGreenfieldRegion6Greenfield MethodIH124Growth Factor 1 year0.85Positively Drained Area (ha)0.454Betterment (%)0SAAR (mm)581QBar1.2Soil Index3Q1 year (l/s)1.1	1004000Pre-development Discharge RateSite MakeupGreenfieldRegion6Greenfield MethodIH124Growth Factor 1 year0.85Positively Drained Area (ha)0.454Betterment (%)0SAAR (mm)581QBar1.2Soil Index3Q1 year (l/s)1.1				;)		-					w		
Site MakeupGreenfieldRegion6Greenfield MethodIH124Growth Factor 1 year0.85Positively Drained Area (ha)0.454Betterment (%)0SAAR (mm)581QBar1.2Soil Index3Q 1 year (I/s)1.1	Site MakeupGreenfieldRegion6Greenfield MethodIH124Growth Factor 1 year0.85Positively Drained Area (ha)0.454Betterment (%)0SAAR (mm)581QBar1.2Soil Index3Q 1 year (l/s)1.1													
Site MakeupGreenfieldRegion6Greenfield MethodIH124Growth Factor 1 year0.85Positively Drained Area (ha)0.454Betterment (%)0SAAR (mm)581QBar1.2Soil Index3Q 1 year (I/s)1.1	Site MakeupGreenfieldRegion6Greenfield MethodIH124Growth Factor 1 year0.85Positively Drained Area (ha)0.454Betterment (%)0SAAR (mm)581QBar1.2Soil Index3Q 1 year (l/s)1.1					Pre-d	levelonm	ent Disch	arge Rat	P				
Greenfield MethodIH124Growth Factor 1 year0.85Positively Drained Area (ha)0.454Betterment (%)0SAAR (mm)581QBar1.2Soil Index3Q 1 year (l/s)1.1	Greenfield MethodIH124Growth Factor 1 year0.85Positively Drained Area (ha)0.454Betterment (%)0SAAR (mm)581QBar1.2Soil Index3Q 1 year (l/s)1.1						-		02.100		ogion (-		
Positively Drained Area (ha)0.454Betterment (%)0SAAR (mm)581QBar1.2Soil Index3Q 1 year (l/s)1.1	Positively Drained Area (ha)0.454Betterment (%)0SAAR (mm)581QBar1.2Soil Index3Q 1 year (l/s)1.1			Gre					Growth		-			
SAAR (mm) 581 QBar 1.2 Soil Index 3 Q 1 year (l/s) 1.1	SAAR (mm) 581 QBar 1.2 Soil Index 3 Q 1 year (l/s) 1.1		Pr								-			
Soil Index 3 Q 1 year (I/s) 1.1	Soil Index 3 Q 1 year (I/s) 1.1						-		-	2	. ,			
							-			Q 1 yea				
						SI	PR 0.40			-				

Flap Valve	х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	х	Sump Available	\checkmark
Invert Level (m)	72.440	Product Number	CTL-SHE-0047-1100-1200-1100
Design Depth (m)	1.200	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	1.1	Min Node Diameter (mm)	1200

Node Storage Crates 1 Depth/Area Storage Structure

Base Inf Coefficie Side Inf Coefficie	• •			ty Factor Porosity		Time to h	72.450		
Depth	Area	Inf Area	Depth	Area	Inf Area	Depth	Area	Inf Area	
(m)	(m²)	(m ²)	(m)	(m²)	(m²)	(m)	(m²)	(m²)	
0.000	320.0	0.0	1.200	320.0	0.0	1.201	0.0	0.0	

Page 4 McDonalds Havehill 30 Year + 20% 100 Year + 40%

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.59%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
960 minute winter	Storage Crates 1	945	73.196	0.746	10.5	226.6530	0.0000	SURCHARGED
15 minute winter	1	10	74.350	0.110	19.4	0.1240	0.0000	ОК
15 minute winter	2	10	75.188	0.143	26.4	0.1622	0.0000	ОК
15 minute winter	3	10	74.211	0.131	45.2	0.1477	0.0000	ОК
15 minute winter	4	10	75.005	0.130	26.8	0.1476	0.0000	ОК
15 minute winter	5	10	75.444	0.044	7.8	0.0496	0.0000	ОК
15 minute winter	6	10	74.934	0.209	42.9	0.2361	0.0000	ОК
15 minute winter	7	11	73.525	0.125	86.5	0.1414	0.0000	ОК
15 minute winter	8	10	73.201	0.086	12.4	0.0972	0.0000	ОК
960 minute winter	9	930	73.196	0.361	2.3	0.4082	0.0000	SURCHARGED
960 minute winter	10	945	73.195	0.640	2.7	0.7242	0.0000	SURCHARGED
960 minute winter	11	945	73.196	0.691	3.0	0.7812	0.0000	SURCHARGED
960 minute winter	HB1	930	73.195	0.755	12.3	0.8538	0.0000	SURCHARGED
960 minute winter	13	945	72.278	0.023	0.9	0.0262	0.0000	ОК
960 minute winter	14	945	72.103	0.023	0.9	0.0257	0.0000	ОК
960 minute winter	15	945	71.845	0.025	0.9	0.0284	0.0000	ОК
960 minute winter	16	945	71.448	0.013	0.9	0.0146	0.0000	ОК
960 minute winter	MH5323	945	70.673	0.013	0.9	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
960 minute winter	Storage Crates 1	6.000	HB1	-10.5	-0.543	-0.166	0.2129	
15 minute winter	1	2.000	3	19.2	0.889	0.451	0.5125	
15 minute winter	2	3.000	3	26.0	1.033	0.644	0.2688	
15 minute winter	3	2.001	7	44.5	1.935	0.589	0.6613	
15 minute winter	4	4.000	6	26.4	0.833	0.623	0.7027	
15 minute winter	5	5.000	6	7.8	1.334	0.186	0.1149	
15 minute winter	6	4.001	7	42.0	1.173	1.002	0.2969	
15 minute winter	7	2.002	HB1	86.7	2.473	0.543	0.2965	
15 minute winter	8	1.000	9	12.0	0.880	0.298	0.4648	
960 minute winter	9	1.001	10	2.3	0.366	0.030	4.2002	
960 minute winter	10	1.002	11	2.4	0.309	0.032	0.7935	
960 minute winter	11	1.003	HB1	3.4	0.147	0.043	0.8831	
960 minute winter	HB1	1.004	13	0.9	0.523	0.049	0.0298	
960 minute winter	13	1.005	14	0.9	0.524	0.049	0.0122	
960 minute winter	14	1.006	15	0.9	0.491	0.050	0.0466	
960 minute winter	15	1.007	16	0.9	0.686	0.050	0.0513	
960 minute winter	16	1.008	MH5323	0.9	1.230	0.015	0.0048	52.7

Page 5 McDonalds Havehill 30 Year + 20% 100 Year + 40%

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 99.59%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
1440 minute winter	Storage Crates 1	1410	73.618	1.168	12.0	355.0532	0.0000	SURCHARGED
15 minute winter	1	10	74.382	0.142	29.0	0.1606	0.0000	ОК
15 minute winter	2	10	75.243	0.198	39.5	0.2236	0.0000	ОК
15 minute winter	3	11	74.271	0.191	67.6	0.2157	0.0000	ОК
15 minute winter	4	10	75.229	0.354	40.1	0.4001	0.0000	SURCHARGED
15 minute winter	5	10	75.454	0.054	11.7	0.0613	0.0000	ОК
15 minute winter	6	10	75.068	0.343	63.8	0.3874	0.0000	SURCHARGED
15 minute winter	7	11	73.831	0.431	130.5	0.4876	0.0000	SURCHARGED
1440 minute winter	8	1410	73.619	0.504	0.8	0.5704	0.0000	SURCHARGED
1440 minute winter	9	1410	73.619	0.784	2.3	0.8871	0.0000	SURCHARGED
1440 minute winter	10	1410	73.619	1.064	2.5	1.2036	0.0000	SURCHARGED
1440 minute winter	11	1410	73.619	1.114	3.3	1.2604	0.0000	SURCHARGED
1440 minute winter	HB1	1380	73.618	1.178	11.9	1.3323	0.0000	SURCHARGED
1440 minute winter	13	1410	72.281	0.026	1.1	0.0290	0.0000	ОК
1440 minute winter	14	1410	72.105	0.025	1.1	0.0284	0.0000	ОК
1440 minute winter	15	1410	71.848	0.028	1.1	0.0313	0.0000	ОК
1440 minute winter	16	1410	71.449	0.014	1.1	0.0161	0.0000	ОК
1440 minute winter	MH5323	1410	70.674	0.014	1.1	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
1440 minute winter	Storage Crates 1	6.000	HB1	-12.0	-0.514	-0.190	0.2129	
15 minute winter	1	2.000	3	28.6	0.954	0.674	0.7226	
15 minute winter	2	3.000	3	39.0	1.135	0.963	0.3642	
15 minute winter	3	2.001	7	67.5	2.020	0.892	1.0867	
15 minute winter	4	4.000	6	39.2	0.985	0.925	0.8968	
15 minute winter	5	5.000	6	11.6	1.342	0.279	0.1285	
15 minute winter	6	4.001	7	63.0	1.585	1.503	0.3243	
15 minute winter	7	2.002	HB1	127.4	3.203	0.798	0.3779	
1440 minute winter	8	1.000	9	0.8	0.402	0.020	1.3576	
1440 minute winter	9	1.001	10	2.1	0.306	0.027	4.2002	
1440 minute winter	10	1.002	11	2.7	0.309	0.037	0.7935	
1440 minute winter	11	1.003	HB1	2.7	0.137	0.034	0.8831	
1440 minute winter	HB1	1.004	13	1.1	0.553	0.060	0.0345	
1440 minute winter	13	1.005	14	1.1	0.555	0.060	0.0141	
1440 minute winter	14	1.006	15	1.1	0.522	0.061	0.0537	
1440 minute winter	15	1.007	16	1.1	0.728	0.061	0.0592	
1440 minute winter	16	1.008	MH5323	1.1	1.305	0.018	0.0055	85.6

APPENDIX F

Suffolk County Council - Drainage proforma for SW Aspects of Planning Applications

Go to Sheet 2

County Council DO NOT PRINT... Appropriate parts of sheet 1 and all of sheet 2 to be completed, starting at top left of sheet1. Yellow cells to be completed by applicant or agent. Most ells have drop down boxes and guidance. Required data will vary, depending on previous answers. Amber cells warn of possible error, lack of required information, no ompliance with policies or standards or where special considerations /information may be required. Red cells indicate missing information required for detailed pplications . Purple Cells indicate missing in ired for outline or orm completed for Contact email or george.baker@crea GEORGE BAKER 4/03/2022 Developer/applicant by (name) Date telephone econsultingengine Date orm checked for LPA by Ref No orm checked for SCC Floods by Date West Suffolk – (Forest Heath & St Edmundsb Site Name District council McDonalds at Haverhill 0.48 Bumpstead Road otal Site area (ha) Address umber of home Road Haverhill Business Park Commercial area (ha) Town laverhill ommercial built area (ha) uffolk County When was the last pre-app discussion with SCC Floods team? Area of POS (ha) Is a complete FRA included in the application? xisting land status ireen Field (es lighest Ground level (m AOD) A Flood Zone(s) owest ground level (m AOD) Does adjacent existing highway drain into the site? Is site at risk of SW flooding? Yes Carry on filling in form. SCC Floods team will be consulted RUNOFF DESTINATION (where proposed SW drainage from site will discharges to) Existing SWS, highway drain or another drainage scroll down to complete Existing Combined appropriate cells Sea or Estuary Ground (Infiltration) SW Body system Sewer Is Site next to Estuary or coast? Veither Fill in cells in this column Will the site be drained directly to sea or estuary? elow SOIL TYPE Have on site ground investigations been undertaken? s a ground investigation report included in application? es . No - Infiltration < ecommendation from GI Report regarding soakaways - Are conditions uitable? 0mm/Hr lumber of test pits that soakage tests were undertaken in. lumber of test pits with completed test to BRE365 Are field sheets, test results and calculations included in application? (es Min Infiltration rate from tests (mm/Hr) Vlax infiltration rate from tests (mm/Hr) s infiltration type drainage proposed? Go to next column Name / Location of SW Body lone Reasons (if any) for not draining to a surface water body oo far by gravity Will SW be discharged to a surface water body? o to next column urface wate ewer- adopted by Type of existing SW piped drainage system W Description / Location of SW drainage system o west of site Reason 1 for not draining to SWS, highway drain Reason 2 for not draining to SWS , highway drain Will SW be discharged to an existing piped SW drainage system? 'es Carry on down colur ly) for p I appropriate colu Existing impermeable area 0.0 Proposed Impermeable area 0.45 Method for calculating allowable discharges, existing or Green field flow H124 using SOIL Peak discharge rate to destination 100 Year return period allowable discharge to SW or combined sewer agreed by AW or SCC (I/sec) 1 year return period Existing (I/sec) 1.: Proposed with CC & creep (I/sec) 100 year return period Existing (I/sec) Proposed with CC & creep (I/sec) Proposed per ha (I/sec/ha) 8.306063489 Critical duration (minutes) 100 Proposed minimum throttle(s) aperture (mm) Attenuation storage provided to limit peak flow (at critical duration) 365 Required if proposed discharge > 2 l/sec/Ha in 100 Yr RP (see BS Volume control Volume of runoff in 6 Hr duration event (cubic metres) 100 Year RP existing 100 Year RP + CC +creep proposed Additional capacity provided in SUDs to control volume Water quality (WQ) Reasons (if any) for not followng best practise for WQ: During construction period Permanent Proposed permament WQ SUDS: Volume of proposed treatment pond (Vt) expressed as mm of rain over the impermeable areas on the site Depth of rain intercepted (refer to SUDS manual) expressed as mm of rain over the impermeable areas on the site Volume intercepted (cubic metres) Capacity of proposed attenuation & volume control SuDs (can be reduced by interception volume) 36 Are calculations and drawings included demonstrating there is sufficient and appropriate space for the proposed SUDS volume within the layout?

Boxes below to be completed for all SW Systems
Proposed SW Drainage system

Proposed Sw Drainage system			
Extent of open SuDS	7. Underground pipes + 1	tanks +some surface flood	storage
	fill in cells below		
Does application include justification for	not using open SUDS?	Yes	
Is pumping of SW proposed?		No	
Does application include justification for	pumping?	No	
Management and maintenance arrange	ments		
Is a management plan included in the ap	plication?	Yes	
Life time for plan and maintenance costs			
Discount rate normally 3.5%			
Proposed SW drainage maintenance			
bodies	Proposals for ensuring of	wners are aware of their	SW drainage & maintenance requirements
Owner (for drainage serving single property)			
	Progress with setting up	maintenance arrangeme	nts

riogress with setting up maintenance analgements

Please indicate who will maintain what	hat Location of SuDs elements					
SuD elements	Private gardens or commercial land	Roads, verges and /or footways	Parking areas	POS	Other eg Mews court	
Vegetation, trees, shrubs etc	Owner	n/a	n/a			
Permeable paving.	Owner					
Rills	Owner					
Open SuDS - Erosion protection, De- silting, headwalls, dividing walls	Owner					
Open SuDS - Bollards or fencing	Owner					
Shallow pipes throttles/headwalls at						
driveway crossings over swales.						
Shallow pipes throttles / headwalls @						
road crossings over swales						
Litter picking including clearing grates						
and grilles	Owner					
Gully Grates -repairs & replacement	Owner					
Gully pots, connection pipes	Owner					
Highway carrier drains						
Soakaways	Owner					
Oil or petrol interceptors	Owner					
Underground attenuation tanks	Owner					
Surface Water Sewer	Owner					
Other - please state						
Other - please state						

Availabilty of 3.5m wide access for SuD			26
maintenance -	1. 3.5m wide access av	ailable to all proposed Si	202
			1
Design flood return period for:		100	
Buildings		100	
Gardens (unless designated to store wa	ter)	20	
Roads		30	
			1
Design for blockage and /or Exceedance			
Are exceedance routes/ storage areas f			
on submitted layout plan(s) including pl	oposed noor and ground		
levels, buildings and roads.		Yes	
SuDS details that are most likely to a	fact layout and maintenance	•	1
Maximum depth of open SuDS (mm)	ieu layout and maintenanc	500	
Maximum depth of water in open SuDS	in 100 Vear RP (mm)	500	
Steepest side slope of open SuDS (1 ve			
Steepest longintudinal gradient of any			
Are any buildings < 5m of open SUDS or		Yes	
if yes describe location(s)	road by drive through wind		
Special protective measures	Todd by drive through white	10W3	
means of access/repair SUDs	close drivethrough roadwa	W	
	close unvernough roudwa	, y	I
Health and Safety - public and mainter	nance operatives		1
Are Designers CDM Health and Safety P			
			1
Structural Integrity			
Have Structural design and specificatio	n details been provided for:		
Pipes -BS EN, Class, strength calcs include	ling bed and surround.		
Tanks - including geocells / fabric surrou	und		
Manholes BS EN, size, type etc (SFA 7			
Headwalls, dividing walls, bunds & slo			
			•
Other Information normally required	(not exhaustive)		
Are design calculations provided, cross	-referenced to drawing(s -als	so provided) showing	
catchments and layout of SuDs, roads	, footways and buildings?	-	Yes
Are landscaping /planting details shown	on drawing(s) provided show	wing SuDS, and	
development layout?	Yes		
Are details of SuDS including inlets, ou	tlets, dividing walls, erosion o	control measures shown	
on provided plans.	,		Yes
Are extents of adoption by each body s	nown on drawings provided?		
Are extents of adoption by cach body s			

APPENDIX G

Haverhill Business Park Haverhill Suffolk

Flood Risk Assessment & Drainage Strategy

Project Ref: NSB/12070/FRA Second Issue

26th November 2015

Client Hammond Rutts Investments Limited

Baynham Meikle Partnership Ltd 8 Meadow Road Edgbaston Birmingham B17 8BU

Tel: +44 (0)121 434 4100 Fax:+44 (0)121 434 4073

1.0 Introduction

- 1.1 This Drainage assessment has been prepared on behalf of Hammond Rutts Investments Limited for the proposed developments on the remaining land at Haverhill Business Park, Haverhill, Suffolk.
- 1.2 The site forms part of the wider Haverhill Business Park that consists of hotel, restaurant, as well as industrial and warehouse properties. The total area covered by the application is some 12.6 ha and includes the area occupied by Phoenix road and Iceni Way. The area of the site that is subject to the earth moving operations is 11.0 ha (27 acres). This is shown on the site location drawing 12070 / 280 within the appendices.

To the south of the site are residential properties, a farm and undeveloped agricultural land, with residential properties located to the north of the site on Bumpstead Road.

1.3 The site consists of seven undeveloped irregular parcels of land (NE1, NE2, SE1, SE2, SW1, NW1 and NW2) that currently hold large volumes of earthworks fill material placed in stockpiles across the site which will be used to form new development plateaus as part of an earthworks operation – refer to the separate Earthworks Strategy Report.

This report is submitted in support of the outline planning application for up to 46,000 sq.m of development that include B Class uses, Car dealerships and PFS/ restaurant as described in the Planning Supporting Statement.

This assessment has been prepared following the guidance set out in National Planning Policy frame work (NPPF) formerly Planning Policy Statement Note no. 25.

Further guidance has been obtained from:

- EA/DEFRA R&D document W5-74/A/TR/1 "Preliminary rainfall runoff for new developments" Revision D, including figures 2.1 & 2.2.
- "Interim National Procedures" point 3, 10.2 & 10.3
- The Suds Manual (ciria c697)
- "Interim Code of Practice for Sustainable Drainage Systems 2004" (ICOP SUDS).

2.0 Topography

- 2.1 A topographic survey of the application site has been carried out which is included in the appendices refer to drawing 12070/230 with the appendices.
- 2.2 The general topography of the site is such that there is a fall from south to north with levels ranging from 86.00m AOD to 70.00m AOD approximately.
- 2.3 The stockpile mounds at each of the sites vary in both in height and extent. The topographical survey drawing illustrates the current stockpile extent and their heights.
- 2.4 The range in stockpile approximate heights are summarised below:

Plot NW1 and NW2	- 1.0m to 8.4m
Plot SW1	- 1.1m to 5.2m
Plot NE1 and NE2	- 1.4m to 14.3m
Plot SE1 and SE2	- 0.0m to 2.6m

On the basis that the earthworks application is approved and the works are carried out as outlines within this earthworks strategy document the proposed new levels across the site will be as illustrated on drawing 12070/220C.

3.0 Existing Surface Water Drainage and Proposed Storm Water Drainage Strategy

- 3.1 Haverhill Business Park is currently served by an adopted surface water sewer system as shown on drawing 12070/220 within the appendices.
- 3.2 The proposed surface water drainage strategy for the development is be based on historic agreement with Anglian Water and developed to suit the outcome of the drainage development enquiry that has been formally submitted.
- 3.3 It is intended the plots SE1, SE2, NE1 and NE2 discharge into the 150mm diameter foul and 150mm diameter storm water sewers currently located within Iceni Way and running parallel to Bumpstead Road within plot NW2 towards Anglian Water detention basin to the north. Drainage record plans from Anglian Water have been appended to this report and are also highlighted on BMP drawings 12070/108 and 12070/109.
- 3.4 The existing route of the above sewers currently pass through the southwest and western boundary of Plot NE1. It is proposed that these sewers are formally diverted subject to the approval of Anglian Water to be located outside of the development platform. Drainage easements will be maintained to ensure adequate access is provided.
- 3.5 In relation to surface water discharge rates to plots NW1 and NW2 discharge points have historically under alternative proposals been agreed in principle with Anglian Water into existing sewers that currently run between these two plots. It is still intended that the same points of discharge are proposed as outfalls to the new development layout.

Surface water discharge rates from the development are subject to further discussions and agreement with Anglian Water to ensure downstream drainage networks, including the holding pond, are not adversely affected as a result of the new development drainage proposals.

Surface water discharge from plot SW1 will be discharged into a dedicated private drainage located to its frontage at Phoenix Road that discharges into the public sewer between plot NW1 and NW2.

3.6 Drawing 12070 / 220 within the appendices illustrates the route of the existing drainage network and the proposed outfall point from the new development platforms.

3.7 At the time of writing this report a new formal application had been submitted to Anglian Water illustrating the position of their sewers and the proposed location of the new connections onto them of new foul and surface water drains from the development. The application also included the proposed new flow rates from the development site.

3.8 Description of Catchments

The Environment Agency floodplain map confirms that the application site is <u>not</u> within a recognised floodplain area and is categorised as in Flood Zone 1.

The Anglian Water detention outfall basin to the north of the development is believed to eventually contribute flow to the Stour Brook Watercourse to the north of the site.

4.0 Ground Investigation and Geology

A phase 2 intrusive Ground Investigation has been carried out across the site by Delta Simons in August 2015.

- 4.1 The work entailed deep rotary Auger boreholes down to depth of between 11m to 12m focused primarily on the areas identified as stockpiled fill material. Shallower trial pit excavations were also undertaken across the site at depths down to 4m.
- 4.2 A collection of disturbed soil samples from all intrusive locations for subsequent laboratory testing in the form of gas and groundwater monitoring was also undertaken.
- 4.3 The site investigation borehole work confirmed the stockpiled material to be comprised of reworked natural fill comprising of a firm to very stiff brown clay with varying fractions of sands and gravels.
- 4.4 This was then observed to be underlain by a natural strata of the Lowestoft Formation a firm to very stiff brown CLAY with varying fractions of sands and gravels, below which was confirmed to be a strata of the Lewes Nodular CHALK formation and the Seaford Nodular CHALK formation.
- 4.5 The shallower trial pit logs confirmed similar findings in the stockpile areas when excavated. In areas where no stockpile of material had been placed the trial pits confirmed that generally the ground comprised of a gravelly clay material underlain by a chalk strata.

- 4.6 It was confirmed during investigative work that topsoil was found only in parts of the site.
- 4.7 Groundwater levels were recorded at being between 2.97 to 8.38m below ground level, these were however considered to be representative of perched water collecting in the boreholes and not associated with a consistent groundwater body beneath the site.
- 4.8 The laboratory chemical analysis of selected soil samples and groundwater samples did not identify the presence of any elevated concentrations of contamination above the respective screening criteria. As such the on-site stockpiled material has been classified as 'non-hazardous'.
- 4.9 Given the nature of the re-worked natural fill material generally Clay, Chalk and Gravel it is likely that soakaway infiltration drainage will not be an effective means for the disposal of surface water from the proposed development.

This should however not preclude the use of tanked infiltration drainage techniques and will be discussed later on in the report.

5.0 Proposed Site

5.1 Description of Development

It is proposed to seek outline planning permission to develop the site for some 45,965 sq. m. GEA of B class employment space that would be suitable for flexible uses with Use Class B1, B2 and B8. The Framework Plan 15016 / TP / 004 within the appendices shows how the site can be laid out as seven separate plots with buildings ranging in size from 1,983 sq. m. to 9,320 sq. m. The layout respects the existing topography of the site and proposed earth movement works. It gives the opportunity to optimise efficiency of the employee car parking areas while incorporating secure service yards for each unit as well as provision for cycles. Access to the plots is generally from Phoenix Road and Iceni Way. The exceptions to this plot NW1 which is accessed to Bumpstead Road. The Architects Framework Masterplan is appended to this report.

- 5.2 A soft Landscape scheme will also be integrated into the development / drainage strategy.
- 5.3 The proposed development site levels have been developed in line with the overall development earthworks strategy refer to BMP Report NSB / 12070 / ERW dated 7th October 2015.

Proposed development levels will also be set such that should any flooding occur it is controlled and kept within the new development demise and not effect neighbouring properties or highway land.

5.4 We understand from discussion with local residents that flooding has on occasion been experienced to the lower off-site areas along Bumpstead Rd at times of prolonged rainfall.

From examination of the record plans it is believed that this is likely to be partially associated with the surface water flows from the existing local public sewers and local drainage ditches along Bumpstead Road.

Whilst the design, management and control of these 'off-site' drainage systems are by others – Anglian Water and Suffolk County Council – we will feel that in principle and subject to approval that the existing drainage networks can be modified to provide further flood protection to neighbouring properties. These could include the following:

• Introducing weir control structure into the proposed new culverted structures along Bumpstead Road to reduce the discharge rate and velocity of run-off.

This would at the same time utilise more of the storage volume available within the culverts and help to easy flooding issues experienced at Bumpstead Road.

- Introduce further banking measure to the edge of the existing Detention Pond to the north of the development behind the existing residential properties to increase its flood volume capacity. This would be a simple earth bunding exercise.
- Increase the diameter of the pipework into and out of the Detention Pond to allow higher rates of flow into it and therefore reduce the possibility of flooding of the network leading into it.

6.0 Drainage Strategy

6.1 <u>Existing Drainage</u>

The existing site is currently undeveloped does not discharge surface water by means of any positive drainage system to off-site sewers or watercourses.

As previously stated earlier the Business Park site currently has some provision for foul and surface water drainage discharge to cater for outfall discharges from the undeveloped plots, however new connection points will have be agreed with Anglian Water prior to connections be constructed.

It is proposed therefore that the foul and surface water discharge from the new development are allowed to utilise the existing public sewer as a means of gravity drainage connections with flow rates subject to agreement with Anglian Water once the developer services application has been concluded with them.

6.2 Proposed Drainage

The findings of the recent site investigation report compiled by Delta Simons suggests that the prevailing ground conditions will be such that infiltration drainage direct into the underlying strata will not be suitable.

The above constraint should however not prohibit the incorporation of SUDS drainage techniques into the proposed drainage strategy. These are described further below.

6.3 Proposed SUDS Measures

6.3.1 Oversized Surface Water Drainage Channels

It should be possible to incorporate within the main service yard areas a series of oversized surface water drainage channels to collect run-off and provide underground attenuation volume.

6.3.2 Porous Car Parking Areas

Although surface water infiltration directly into the ground is not proposed, we have not allowed this to prohibit the potential integration of infiltration drainage techniques into the design. A lined / tanked infiltration drainage feature can be incorporated into the design to provide further attenuation volume and attenuation of peak design flows.

This can be incorporated to new areas of staff and visitor's car parking that can be constructed as an area of permeable surfacing that could comprise of a permeable block paving system underlain by a suitable free draining subbase material that will enable surface water run-off to be attenuated. This design will help attenuate peak design flows from the developments by utilising the volume available within the permeable stone (type 1 material with no fines) within the structural layers of the construction. It is proposed that the permeable stone media is tanked by an impermeable membrane and flows are allowed to discharge back into the drainage system via a series of perforated pipes placed within the stone media.

These methods of surface water interception / collection will also avoid the need to provide full retention oil interceptor units within parking areas as the stone media under the permeable block paving will naturally capture hydrocarbon contaminants.

6.3.3 <u>Underground Storage</u>

Underground attenuation storage can also be provided to the surface water drainage system in the form of oversized pipes and cellular storage tanks to provide additional storage volumes at times of the higher 1 in 30 and 1 in 100 year plus climate change storm return periods.

6.3.4 <u>Allowable Surface Flooding</u>

Additional storage of peak storm water can be facilitated by allowing car-parking and Service yard areas to flood up to circa 100mm, provided this will not put the buildings, or neighbouring properties at risk of flooding. The proposed site levels will be set such that this is achieved, and will need to be carefully considered to ensure that flooding is routed away for the proposed new office / populated areas.

6.3.5 Filtration / Cleaning

There will be a natural filtering/cleaning out of any hydrocarbon pollution form the effect of surface water passing through the stone media underneath the permeable car parking surfacing. The use of a petrol interceptor is not proposed in this instance, although full retention interceptors will still be incorporated into the service yard drainage scheme, with by-pass interceptors incorporated to any new car parking drainage areas that are not permeable.

6.3.6 Flow Controls

Peak surface water discharge rates into the public sewer are to be controlled by the introduction of Hydrobrakes and orifice plate control units installed within the on plot manholes at the proposed outfalls and strategically on the on-site drainage networks.

Peak flow rates will be controlled from the new development such that capacity of the drainage systems to neighbouring sites will not be adversely affected. Flows rates from the new site will be ultimately agreed with Anglian Water upon review of local capacities.

6.3.7 <u>Maintenance</u>

The complete drainage system will have a detailed maintenance regime in place prior to occupation. This regime will involve an inspection after 3 and 6 months, and any maintenance required will be carried out. A further inspection will be carried out after 12 months, after which the maintenance schedule will be reviewed and adjusted to suit the circumstances and maintenance requirements of the development. In any case following severe storm events, the system will be inspected to ensure that all elements are performing satisfactory.

6.4 <u>Surface Water Discharge Rates</u>

Anglian Water have confirmed that the historic section 104 agreement for the parcels of land SW1, NW1 and NW2 currently under consideration exists. They have also confirmed that these agreement should be used for future plot drainage design.

Anglian Water have further confirmed that the remaining parcels of developable land namely plots NE1, NE2, SE1 and SE2 would be subject to discharge rates calculated using 5 l/s per hectare.

Contact has been made with the "Planning Equivalence Department" at Anglian Water to confirm the above in relation to this application whilst also to discuss alternative methods of connection onto their public sewer system.

The table below shows the proposed development areas and their proposed respective discharge rates.

Plot No	Development Plateau Area (Ha)	Proposed Discharge Rate (L/S)
Plot SW1	0.381	7.2 (section 104)
Plot NW1	0.534	9.3 (section 104)
Plot NW2	1.480	185 (section 104)
Plot NE1	1.959	9.8 (Greenfield)
Plot NE2	3.022	15.1 (Greenfield)
Plot SE1	0.890	4.4 (Greenfield)
Plot SE2	1.098	5.5 (Greenfield)

Table 1

Whilst for the purpose of this report we have based out proposals on the data in the above table we will review with Anglian Water the possible options to proportion the allowable flow rates between plots differently (pipe diameter permitting) given that the ultimate point of discharge is the same detention basin to the north of the site.

It is proposed that the above flow rates in Table 1 are used to limit the peak discharge for the 1 in 30 year and 1 in 100 year plus climate change return period.

6.5 <u>Windes Network</u>

Windes / Microdrainage modelling software has been used to determine the average required volume of storage for each plot for both the 1 in 30 year and 1 in 100 year plus climate change return period.

Further detailed design and modelling will determine the exact flow characteristics of the final drainage networks however table 2 below shows the average storage volume requirements that would need to be achieved using the various SUDS techniques described earlier within this report.

Design files are included with the appendices of this report.

Plot	Discharge Rate I/s	1 in 30 year volume	1 in 100 year plus climate change volume
SW1	7.2	89	176
NW1	9.3	127	250
NW2	18.5	137	345
NE1	9.8	652	1229
NE2	15.1	1006	1896
SE1	4.4	292	561
SE2	5.5	365	688

Table 2

Whilst we have shown a volume requirement for the 1 in 100 year storm in reality only the 1 in 30 volume will provide underground with the remainder upto the 100 year event being provided using controlled flooding of external areas to provide flood water containment within specific plots.

7.0 Foul Water Drainage Strategy

- 7.1 It is proposed that the existing foul water within Iceni Way will be used to serve plots SE1 and SE2 for future drainage connections.
- 7.2 It is proposed that Plot NE1 and NE2 will share a common foul drainage system that will discharge in to the existing foul water manhole located at Bumpstead Road.
- 7.3 It is proposed that foul drainage form plots NW1 and NW2 will discharge to the existing public sewer running between the two sites.
- 7.4 Foul water discharge from plot SW1 will be into a dedicated private drainage located to its frontage at Phoenix Road that discharges into the public sewer between plot NW1 and NW2.
- 7.5 Further consultation with Anglian Water will confirm the allowed foul water discharge rate from each plot development, however previous applications have agreed flow rates of between 1.2 to 2.1 l/s per hectare.

8.0 Highway Drainage

- 8.1 The current road infrastructure (Bumpstead Road, Iceni Way and Phoenix Road) are currently drained via a highway drainage system that discharges to open drainage ditches to the back of the existing footpath within the development ownership boundary and proposed development land.
- 8.2 It is proposed that these open ditches are diverted by introducing culverted sections and re-positioned closer to the highway footpath to limit the constraint upon the proposed new developments.
- 8.3 The necessary proposed easements will be put in place over the route of the diverted culverts so that sufficient highway access is provided for maintenance. The detail of the above work will be agreed with the Highway department at Suffolk County Council.

9.0 Flood Risk Assessment

9.1 Existing Information on Flood Risk

9.1.1 <u>Tidal/Coastal</u>

Tidal or coastal flooding is not considered a risk as the nearest coast is approx. 64 kilometres away from the site.

9.1.2 Groundwater

Groundwater flooding is not known to be an issue. The existing site has had no problem with any form of groundwater.

9.1.3 Surface Water

There is no evidence to suggest that the site currently drains to the existing adopted surface water sewers in the vicinity. Discharge of flow from the development into the public sewers is proposed and is to be approved by Anglian Water and the Environment Agency in line with historic approvals already in place.

9.1.4 <u>Rivers / Watercourses</u>

The Environment Agency publishes floodplain maps on the internet (http://www.environment-agency.gov.uk). These maps show the possible extent of fluvial flooding for the 1 in 100-year flood (that which would have a 1% probability of being exceeded each year) or the possible extent of tidal flooding to a 1 in 200 year event. A plan showing the extent of the flooding along the nearest marked Environment Agency marked watercourse is presented in appendix A. This plan shows that the development under consideration is outside the area of any recognised floodplain.

10.0 Summary

Baynham Meikle Partnership has prepared this Flood Risk Assessment along the lines set out in the National Planning Framework (NPPF), to support the outline Planning Application for the Haverhill Business Park.

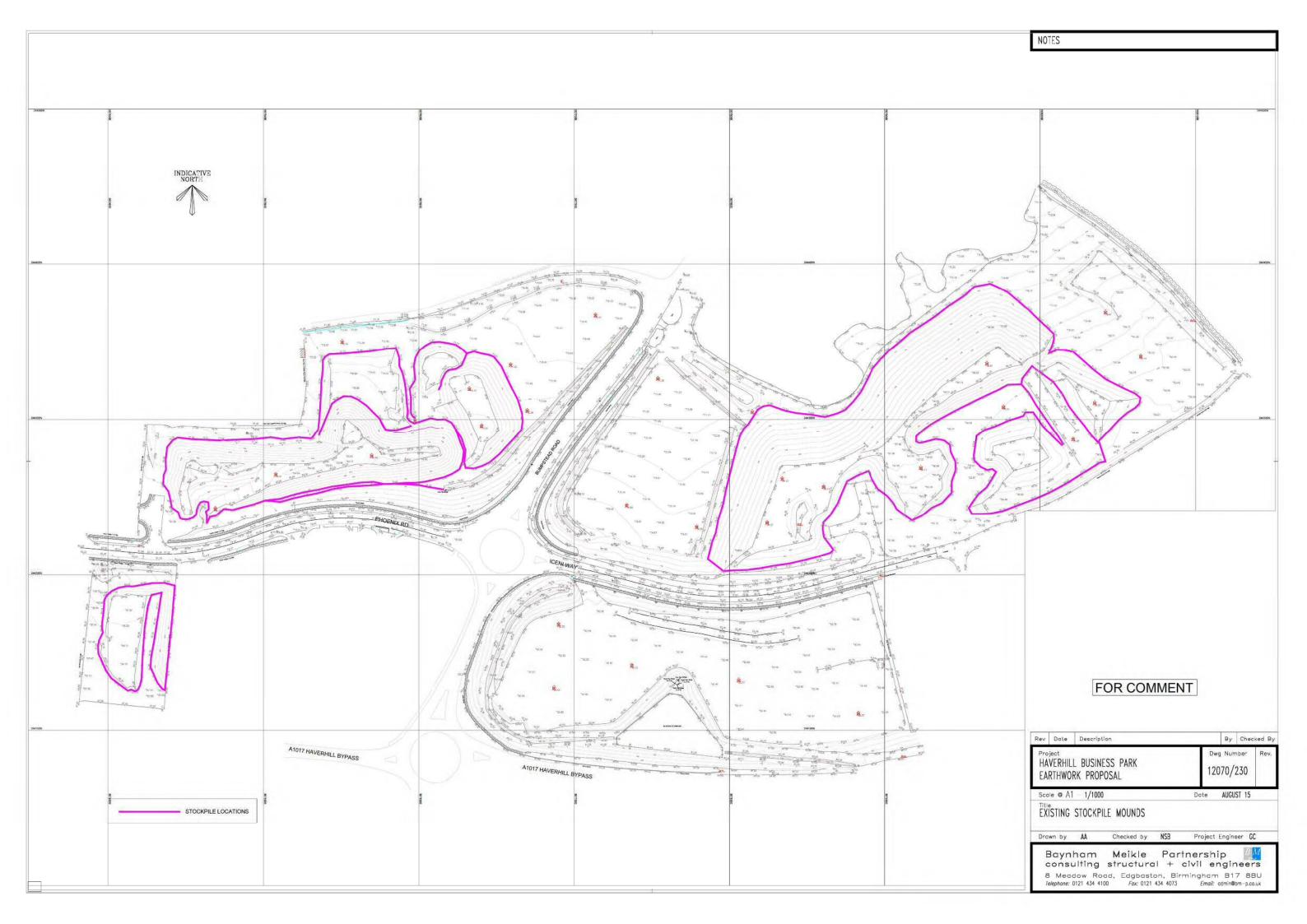
The Flood Risk Assessment for the outline planning applications is summarised as follows:

- The Flood Maps have shown that the site is not identified to be at risk from fluvial flooding and does form part of a functional floodplain.
- The proposed redevelopments will not generate any extra flow and will not exacerbate any flooding that may already occur within the vicinity of the site.
- Surface water flows from the developments will be attenuated and discharged back into the existing adopted public network subject to agreement with Anglian Water.

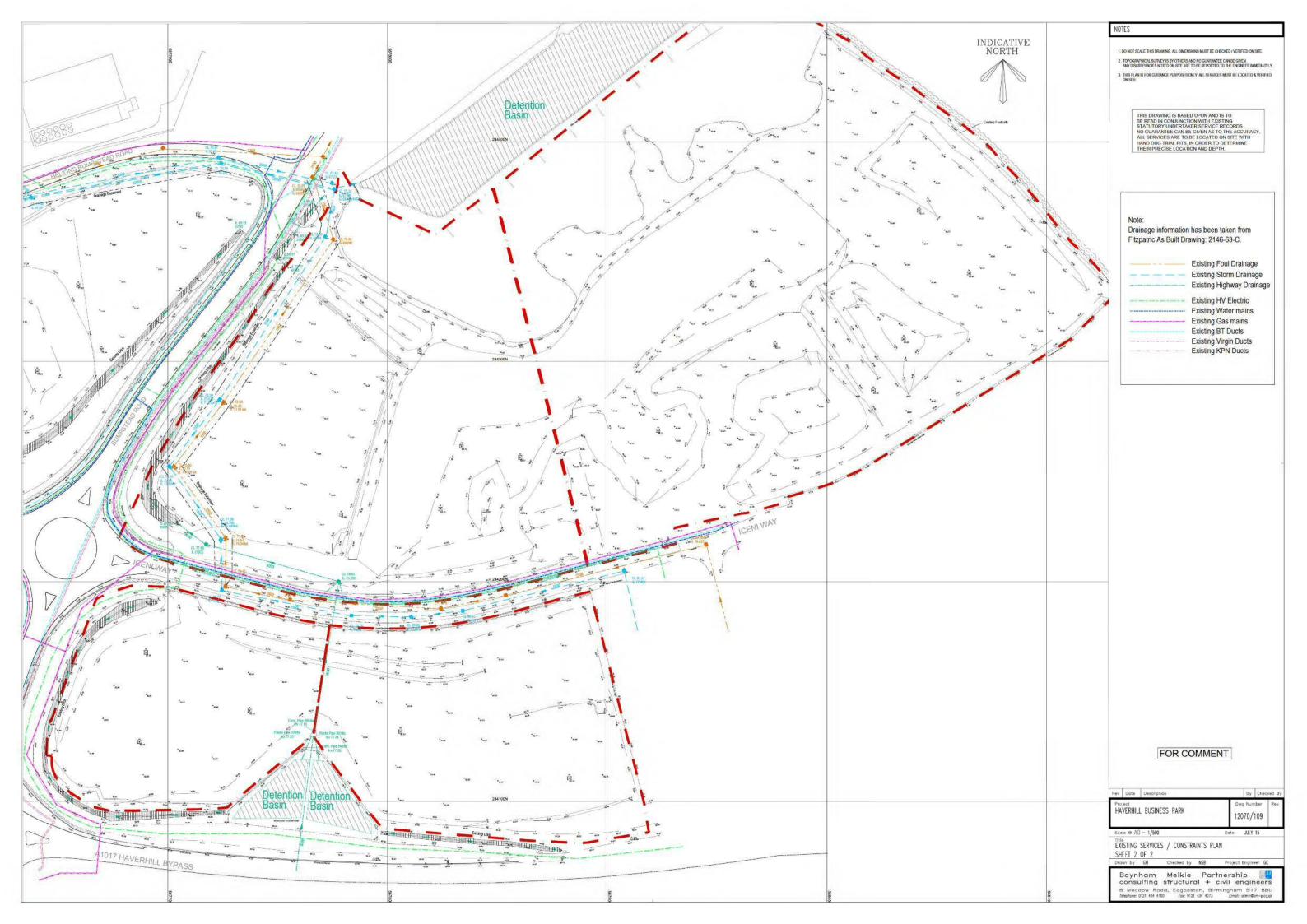
A combination of greenfield and brownfield run-off rates have been adopted through the design of the new drainage systems.

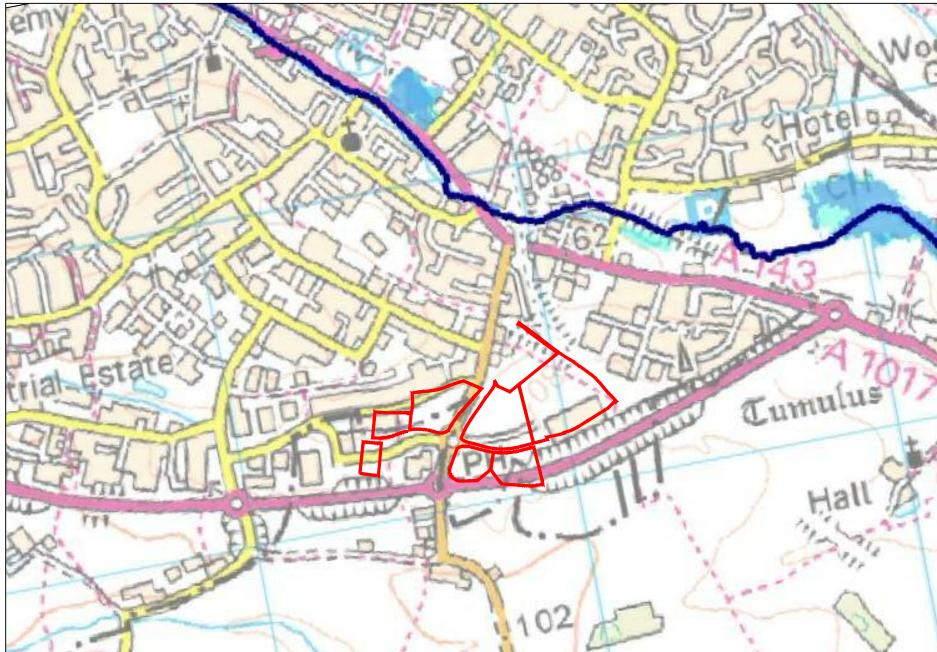
- External areas of car-parking and service yards are to be allowed to temporarily flood by no more than 100mm in extreme storm events. Finished ground levels will need to be carefully considered and flood routing will be applied to ensure protection to proposed buildings and of adjacent landowners, in the event of extreme conditions.
- The water quality will also be improved because of the use of SUDS drainage techniques such as drainage ditches and trenches.

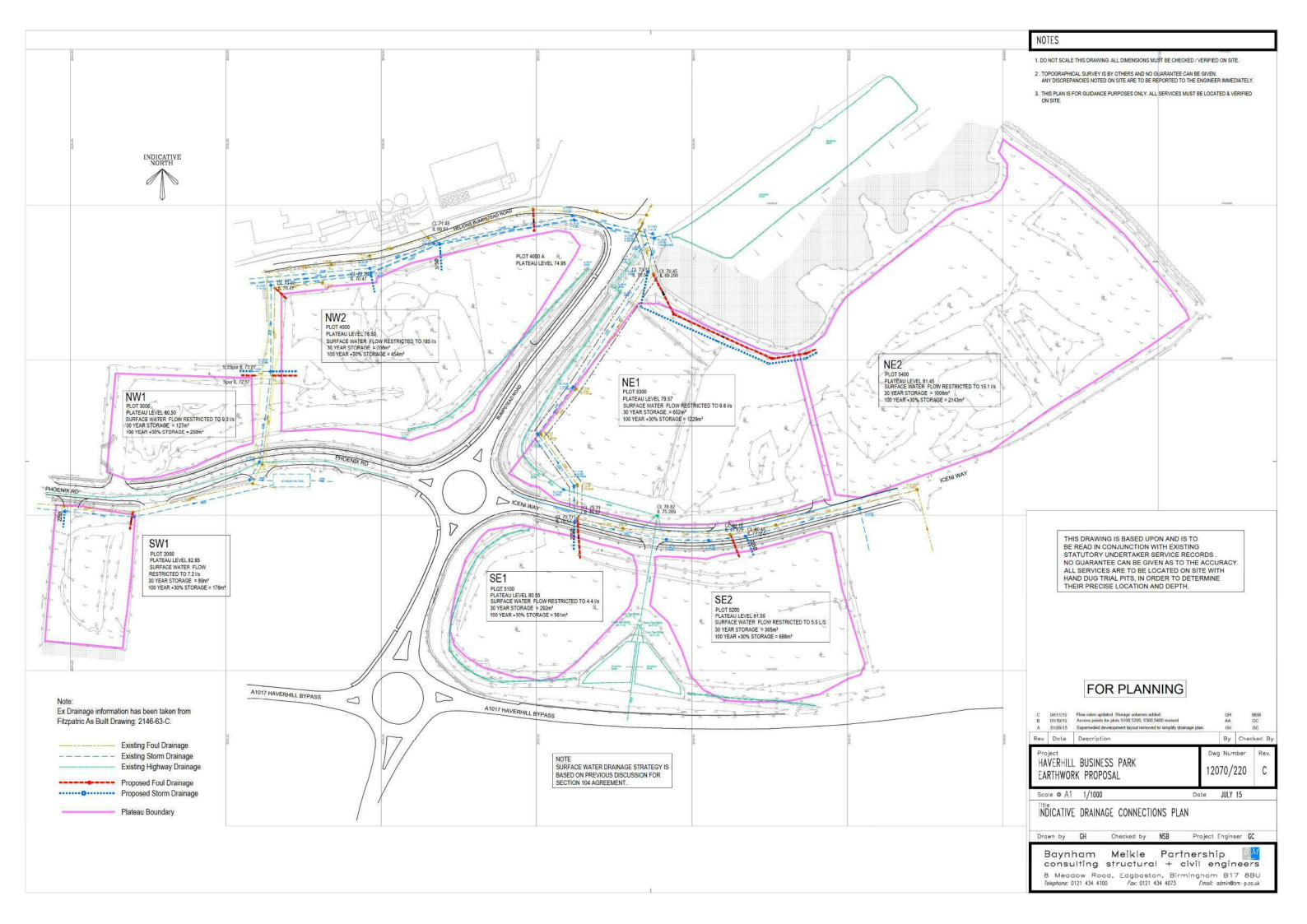
New sustainable drainage schemes will be implemented such that surface water flows from the development will be attenuated to offer an overall betterment to the existing situation by effectively controlling and reducing flows into the local system.


This is mainly due to the peak runoff flows from the sites being reduced when compared to existing flows from the sites and adoption of recommended SUDS design techniques in line with the EA guidance.

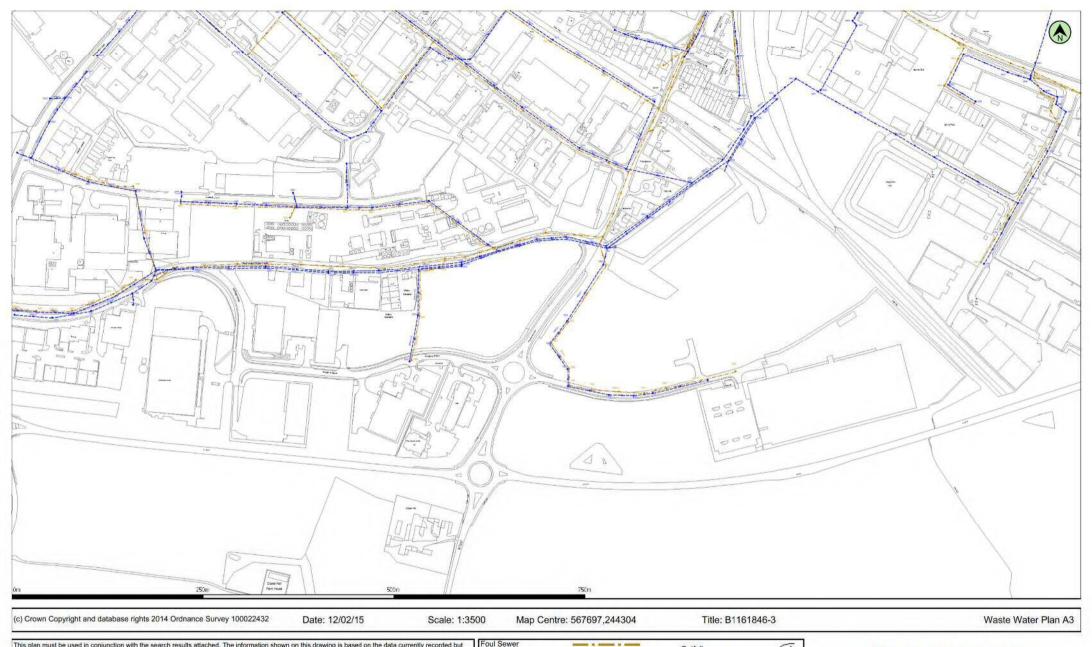
Appendices


- 1. DO NOT SCALE THIS DRAWING, ALL DIMENSIONS MUST BE CHECKED / VERIFIED ON SITE.
- 2. TOPOGRAPHICAL SURVEY IS BY OTHERS AND NO GUARANTEE CAN BE GIVEN. ANY DISCREPANCIES NOTED ON SITE ARE TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 3. THIS PLAN IS FOR GUIDANCE PURPOSES ONLY, ALL SERVICES MUST BE LOCATED & VERIFIED ON SITE.


Rev	Date	Descripti	on				Ву	Chec	ked By
HAVERHILL BUSINESS PARK						Num 07/:		Rev.	
Sco	le @ A1	1/2500			Da	te	SEPTE	MBER 1	5
LO(LOCATION PLAN								
Dra	wn by	ARA	Checked by	NSB	Pr	oject i	ingine	er PL	OT W
с 8	Mead	lting	od, Edgbast	al + c	rivil ning	en ham	gir B1	eer 7 88	U



	NOTES
	NOLU
	1. DO NOT SCALE THIS DRAWING ALL DIMENSIONS MUST BE CHECKED / VERIFIED ON SITE.
2442000	 TOPOGRAPHICAL SURVEY IS BY OTHERS AND NO CLURANTEE CAN BE GREN MY DISCREPANCIES NOTED ON SITE ARE TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
	3 THIS PLAN IS FOR GUIDANCE PURPOSES ONLY ALL SERVICES MUST BE LOCATED & VERFIED ON SITE
	THIS DRAWING IS BASED UPON AND IS TO
	BE READ IN CONJUNCTION WITH EXISTING STATUTORY UNDERTAKER SERVICE RECORDS
	NO GUARANTEE CAN BE GIVEN AS TO THE ACCURACY, ALL SERVICES ARE TO BE LOCATED ON SITE WITH HAND DUG TRIAL PITS, IN ORDER TO DETERMINE
	THEIR PRECISE LOCATION AND DEPTH.
>.< \	
and the second second	Note: Drainage information has been taken from
1. The second second	Fitzpatric As Built Drawing: 2146-63-C.
and a second	
the second of	Existing Foul Drainage
A A A A A A A A A A A A A A A A A A A	Existing Stoff Drainage
244300N	Existing HV Electric
13 . 1	Existing Water mains
. /	Existing Gas mains Existing BT Ducts
\$	Existing Virgin Ducts
	Existing KPN Ducts
100 min un	
/ Ē	
10 20	
1 1	
1 Wind	
in the	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	
- A COLOR	
10 0	
*un *un	
Way BAY BU	
10.00 10.00	
*a+ *a#	
ą.,	
*co *ca *ua	
ten ten	
ern *Brr	
+ne 244100N	
	FOR COMMENT
En the train the	
ce un un en	Rev Date Description By Checked B
ಯ ಮೇ ಮೇ ಯೇ	Project Dwg Number Rev. HAVERHILL BUSINESS PARK 10070 /100
	12070/108
	Scole @ A0 - 1/500 Date JULY 15
	EXISTING SERVICES / CONSTRAINTS PLAN SHEET 1 OF 2
	Drawn by GH Checked by NSB Project Engineer GC
6 A	Baynham Meikle Partnership 🕌 consulting structural + civil engineers
	8 Meadow Road, Edgboston, Birmingham B17 88U Tekshare 0121 434 4100 Tax 0121 434 4073 Email: atmini@em-pacuk



	Hall Stur			
Bayn consi	ham Meikle Partnership 🌌 ulting structural + civil engineers	Checked I Drawn by Proj. No.		H
Project	HAVERHILL BUSINESS PARK		NOV 15	
Title	EA FLOOD MAP		SK8	Rev.

This plan must be used in conjunction with the search results attached. The information shown on this drawing is based on the data currently recorded but the position must be regarded as approximate. Service pipes, private sewers and drains are not generally shown. As from 1st October 2011 ownership of private sewers and lateral drains drains drains drains drains are not generally shown. As from 1st October 2011 ownership of of this map do not reflect these changes. The actual position of all apparatus MUST be established by trial holes. No liability whatsoever is accepted for any error or omission. This information is valid for the date printed. This plan is produced by Anglian Water Services Ltd. trading as GEODESYS from Ordnance Survey digital map data which is protected by Crown corpright not remains the property of Ordnance Survey, (c)Crown copyright, 10002432. This map data is to be used for the purposes of viewing the location of Anglian Water 'plant' only. Any other use of the map data or further copies are not permitted.

o of ntents any tance ap Final Effluent (Color denote effluent type) Decommissioned Sewer (Color denote effluent type) Decommissioned Sewer (Color denote effluent type) Outfall (Colour denotes effluent type) Iniet (Colour denotes effluent type) Manhole (Colour denotes effluent type) Sewage Treatment Works Pumping Station

DX123730 Huntingdon 6

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
0201	F	-	80.04	-
0202	F	-	79.29	-
0401	F	-	85.99	-
0402	F	-	84.92	-
1301	F	-	78.34	-
1302	F	-	77.78	
1303	F	-	76.19	-
1401	F	-	83.54	-
1402	F	-	83.12	
1601	F	-	60.34	-
2301	F	-	75.92	-
2301	F	-	-	-
2302	F	-	74.85	-
2401	F	-	-	-
2402	F	-	-	-
2501	F	-	-	-
2502	F	-	-	-
2601	F	-	-	-
2602	F	-	60.54	-
2603	F	-	-	-
2604	F	-	2	-
3301	F	-	73.69	-
3401	F		-	-
3401	F	-	-	-
3402	F	-	-	-
3402	F	-	-	-
3501	F		-	-
3502	F	-	-	-
3503	F	-	-	-
3504	F	-	-	-
3505	F	-		-
3601	F	-	60.7	
3601	F	-		
3602	F	-	60.88	-
3603	F	-	-	
3603	F	-	-	-
4301	F		71.04	-
-New market	F	-		
4401 4402		-	-	•
	F	-	-	-
4501	2		82.79	
4601	F	-	-	-
5200	F	78.5	73.435	5.065
5201	F	75.15	71.897	3.253
5301	F	70.9	69.283	1.617
5302	F	72.3	70.47	1.83
5303	F	71.3	69.69	1.61
5304	F	73	70.706	2.294

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
5601	F	-	78.54	-
5602	F	-	78.3	-
5603	F	-	80.67	-
5604	F	-	77.91	-
5605	F	-	80.68	-
6301	F	-	-	-
6302	F	-	69.1	-
6303	F	-	68.65	-
6501	F	-	76.06	-
7100	F	-	-	-
7101	F	-	-	-
7200	F	-	-	1
7201	F	-	-	-
7202	F	-	-	-
7301	F	-	67.73	- 20
7302	F	-	-	4
7303	F	-	-	1
7401	F	-	67.41	-
7402	F	-	69.46	-
7501	F	-	70.75	-
7601	F	-	-	140
7602	F	-	-	-
8100	F	-	-	-
8101	F	-	-	-
8401	F	-	66.93	-
8501	F	-	69.85	4
8502	F	-	66.33	-
8503	F	-	68.18	
8504	F	-	-	-
8601	F	-	64.64	-
8602	F	-	65.7	-
8603	F	-	65.68	4
8604	F	-	66.91	-
8605	F	-	67.73	-
9200	F	-	-	-
9601	F	-	4	-
0251	S	-	80.66	4
0252	S	-	82.64	1 .
0253	S	-	79.68	-
0254	S	-	85.19	-
0451	S	2	88.69	1-
0452	S	-	85.17	-
0551	S	-	88.99	-
0551	S	-	-	-
0552	S	-	91.29	-
0552	S	2	63.37	4
0553	S	-	92.61	-
0554	S	-	92.35	-

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
0651	S	-	93.42	
0651	S	-	-	-
0652	S	-	-	-
1251	S	-	80.19	-
1352	S	-	78	-
1353	S		76.89	
1354	S	¥	+	14.
1356	S	-	-	-
1357	S	-		-
1451	S	-	82.8	-
1551	S	-	-	-
1552	S	+	-	-
1651	S	-	-	- 5.
1651	S	-	61.36	-
1652	S	-	-	-
1652	S	4	-	-
2351	S	-	-	-
2351	S	-	-	- 5
2352	S	-	-	-
2352	S	-	-	2
2451	S	2	-	14
2451	S	-	-	-
2452	S	-	-	-
2452	S	-	-	-
2453	S	-	-	-
2551	S	2	-	-
2552	S	-	-	-
2651	S	-		(4)
2652	S	-	-	1 /-
3351	S	-	-	-
3352	S	-	-	-
3451	S	-	-	-
3451	S	-	+	(4 1)
3452	S	-	-	-
3452	S	-	-	-
3551	S	-	-	-
3551	S	-	-	-
3552	S	-	-	4.
3553	S	-	-	-
3554	S	-	60.08	-
3555	S	12	-	4
3556	S	1	-	4
3651	S		-	-
3651	S	-	59.92	-
3652	S	-	-	-
3653	S	2	-	-
4351	S	-	-	-
4352	S	-	-	-

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
4353	S	-	-	-
4354	S	-	-	-
4451	S	-	-	-
4452	S	-	-	-
4453	S	-	-	-
4551	S	-	-	-
4552	S	-	-	÷.
4553	S	-	-	-
4554	S	-	83.2	-
4651	S	-	-	-
5251	S	78.9	76.532	2.368
5252	S	75.3	72.996	2.304
5351	S	-	-	1-
5352	S	-	-	-
5353	S	72.2	70.47	1.73
5354	S	73	70.706	2.294
5451	S	-	-	-
5551	S	-	81.15	-
5651	S	-	78.62	-
5652	S	-	77.74	1_2
5653	S	14	77	120
5654	S	-	78.32	-
5655	S	-	78.95	-
6351	S	-	-	-
6353	S	-	-	-
6354	S	-	-	-
6551	S	-	76.41	-
7150	S	-	-	-
7151	S	-	-	-
7250	S	-	-	-
7251	S	-	-1	-
7252	S	14	-	4
7351	S	-	-	-
7352	S	-	-	-
7353	S	-	-	-
7354	S	-	23	1_0
7355	S	4	-	120
7451	S	-	69.83	-
7551	S	-	71.11	-
7651	S	-	-	-
7652	S	-	-	2
7653	S	-	71.99	120
8150	S	-	-	-
8151	S	-	-	-
8451	S	-	67.82	-
8452	S		-	4
8454	S	-	-	-
8455	S	-	-	-

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
8551	S	-	70.28	-
8651	S	-	59.27	-
8652	S	-	67.4	-
8653	S	-	66.82	-
8654	S	-	67.07	-
8655	S	-	65.5	-
9250	S	-	-	-
9451	S	-	-	-
9452	S	-	-	-
9551	S	-	4	-
9552	S	-	-	-
9553	S	-	-	-
9554	S	-	-	-
9555	S	-	-	-
9556	S	-	-	4
9651	S	-	-	4
			1	
		-		_
			-	
2				-
		1		

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Inver
			1	

NE1 30 YEAR STORAGE

	Results
Micro Drainage	Global Variables require approximate storage of between 559 m ³ and 751 m ³ . These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
٧t	
	Analyse OK Cancel Help

L.	Variables						
Victo	FSR Rainfal				Cv (Summer)	0.750	1.
Irainage	Return Period	l (years)	30	D.	Cv (Winter)	0.840	
		-	1010	-	Impermeable Area (ha)	1.959	
Variables	Region	England and	d Wales	-	Maximum Allowable Discharge	9.8	
Results	Мар	M5-60 (mm)	20.000		()/s)		
Design	-	Ratio R	0.446		Infiltration Coefficient (m/hr)	0.00000	
Overview 20					Safety Factor	2.0	
Overview 3D					Climate Change (%)	0]
Vt							
			A	naly	rse OK Cano	el 🛛	Help

NE1 100 YEAR +30% STORAGE

-	Results
Micro Drainage	Global Variables require approximate storage of between 1087 m ³ and 1413 m ³ . These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help

	Variables						
Micro Drainage	FSR Rainfal			34	Cv (Summer)	0.750	
Diamage	Return Period	d (years)	100		Cv (Winter)	0.840	
122531.04	Region	England and	Water.		Impermeable Area (ha)	1.959	
Variables	00.00000	944-553-550 W	ta carata ta c		Maximum Allowable Discharge (I/s)	9.3	
Results	Map	M5-60 (mm)	20.000				
Design		Ratio R	0.446		Infiltration Coefficient (m/hr)	0.00000	8
Overview 2D					Safety Factor	2.0	
Overview 3D					Climate Change (%)	30]
Vt							
				Analy	rse OK Cano	iel 🚺 🚺	Help

NE2 30 YEAR STORAGE

	Results
Vicro Drainage	Global Variables require approximate storage of between 862 m ³ and 1159 m ³ . These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help

La l	Variables						
Micro Drainage	FSR Rainfa	Ķ		1	Cv (Summer)	0.750	
ordinage	Return Perio	d (years)	30		Cv (Winter)	0.840	
1.000					Impermeable Area (ha)	3.022	
Variables	Region	England and	Wales	1	Maximum Allowable Discharge	15.1	
Results	Мар	M5-60 (mm)	20.000		(/s)	The first the second	
Design		Ratio R	0.446		Infiltration Coefficient (m/hr)	0.00000	
Overview 2D					Safety Factor	2.0	
Overview 3D					Climate Change (%)	0	
Vt							
				Anah	vse OK Can	cel	Help

NE2 100 YEAR + 30% STORAGE

	Results
Vitro Drainage	Global Variables require approximate storage of between 1656 m ³ and 2155 m ³ . These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help

4	Variables						
Micro Drainage	FSR Rainfal	I.			Cv (Summer)	0.750	
praimage	Return Period	d (years)	100	1	Cv (Winter)	0.840	1
Variables	Region	England and	d Wales		Impermeable Area (ha) Maximum Allowable Discharge	3.022	-
Results	Мар	M5-60 (mm)	20.000	j	(/s)		
Design		Ratio R	0.446		Infiltration Coefficient (m/hr)	0.00000	
Overview 2D					Safety Factor	2.0	
Overview 3D					Climate Change (%)	30]
Vt.							
				Analy	rse OK Cano	cel	Help

NW1 30YEAR STORAGE

	Results				
Alcro Drainage	Global Varia of between These value	104 m ³ and	151 m ³ .	ite storage nd should not be used for desi	gn purposes.
Variables	-				
Results					
Design					
Overview 2D					
Overview 3D					
Vt					
Quick Storage		aximum Allowa	able Discharg	e between 0.0 and 999999.0	
Quick Storage		aximum Allowa	able Discharg	e between 0.0 and 999999.0	
Micro	Estimate		able Discharg	e between 0.0 and 999999.0	0.750
w.	Estimate Variables		able Discharg	Cv (Summer)	
Alcro Jrainage	Estimate Variables FSR Rainfall Retum Period	(years)	30	 Cv (Summer) Cv (Winter) Impermeable Area (ha) 	0.750
Micro	Estimate Variables FSR Rainfall Retum Period Region	(years) England and	30 J Wales	Cv (Summer)	0.750
Vicro Jrainage	Estimate Variables FSR Rainfall Retum Period	(years) England and M5-60 (mm)	30 3 Wales 20.000	 Cv (Summer) Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge 	0.750 0.840 0.534
Vicro Jicinage Variables	Estimate Variables FSR Rainfall Retum Period Region	(years) England and	30 J Wales	 Cv (Summer) Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge 	0.750 0.840 0.534 9.3
Variables Results	Estimate Variables FSR Rainfall Retum Period Region	(years) England and M5-60 (mm)	30 3 Wales 20.000	 Cv (Summer) Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge (//s) 	0.750 0.840 0.534 9.3
Variables Results Design	Estimate Variables FSR Rainfall Retum Period Region	(years) England and M5-60 (mm)	30 3 Wales 20.000	 Cv (Summer) Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge (l/s) Infiltration Coefficient (m/hr) 	0.750 0.840 0.534 9.3
Variables Results Design Overview 2D	Estimate Variables FSR Rainfall Retum Period Region	(years) England and M5-60 (mm)	30 3 Wales 20.000	 Cv (Summer) Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge (l/s) Infiltration Coefficient (m/hr) Safety Factor 	0.750 0.840 0.534 9.3 0.00000 2.0
Variables Results Design Overview 2D Overview 3D	Estimate Variables FSR Rainfall Retum Period Region	(years) England and M5-60 (mm)	30 1 Wales 20.000 0.446	 Cv (Summer) Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge (l/s) Infiltration Coefficient (m/hr) Safety Factor 	0.750 0.840 0.534 9.3 0.00000 2.0 0

NW1 100YEAR + 30% STORAGE

	Results		
Wicro Drainage	Global Variables require approximate of between 213 m ³ and 289 m ³ . These values are estimates only and		sign purposes.
Variables			So 101 102
Results			
Design			
Overview 2D			
Overview 3D			
Vt			
	Ana	lyse OK Car	ncel Help
	Enter Climate Change betw	een -100 and 600	
Quick Storage	Estimate		
Quick Storage	Estimate Variables		
Quick Storage		Cv (Summer)	0.750

Drainage	FOR Rainial		2		0.750
oremotic	Return Period	i (years)	100	Cv (Winter)	0.840
	2	-		Impermeable Area (ha)	0.534
Variables	Region	England and	Wales 👻	Maximum Allowable Discharge (I/s)	9.3
Results	Мар	M5-60 (mm)	20.000		
Design		Ratio R	0.446	Infiltration Coefficient (m/hr)	0.00000
Overview 2D				Safety Factor	2.0
Overview 3D				Climate Change (%)	30
Vt					
			Ana	lyse OK Can	cel Help
		Enter Climate	e Change betw	veen -100 and 600	

NW2 30 YEAR STORAGE

dicro Irainage	Global Variables require approximate storage of between 66 m ³ and 207 m ³ . These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help

L.	Variables			_			_
Micro	FSR Rainfal	lí .	3	¥	Cv (Summer)	0.750	
Irainage	Return Period	d (years)	30		Cv (Winter)	0.840	
	Barres	TT I I	that the second		Impermeable Area (ha)	1.480	
Variables	Region	England and	Wales	•	Maximum Allowable Discharge (//s)	185	
Results	Map	M5-60 (mm)	20.000		ur ar		
Design		Ratio R	0.446		Infiltration Coefficient (m/hr)	0.00000	
Overview 2D					Safety Factor	2.0	
Overview 3D					Climate Change (%)	0]
Vt							
			A	naly	se OK Cano	cel	Help

NW2 100 YEAR + 30% STORAGE

N. a.	Results				
Micro Drainage	Global Var of between	iables require n 235 m³ and	e approxima 454 m³.	te storage	
	These value	ues are estima	ates only ar	nd should not be used for desig	jn purposes.
Variables					
Results					
Design					
Overview 2D					
Overview 3D					
Vt					
			An	alyse OK Canc	el Help
			- Channel Lat.	100 1000	
		Enter Climate	e Chande ben	ween - IUU and 500	
		Enter Climate	e Change ben	ween -100 and 600	
		Enter Gimate	e Change ben	ween - 100 and 600	
Quick Storage	Estimate	Enter Ulmate	e Change ben	ween - 100 and 600	
Quick Storage	Estimate Variables	Enter Climate	e Change ben	ween - IUU and bUU	
	1	(44)	e Change ben	Cv (Summer)	0.750
Ly	Variables	II	100	Cv (Summer) Cv (Winter)	
Aicro Jrainage	Variables FSR Rainfa Retum Perio	ll d (years)	100	Cv (Summer) Cv (Winter) Impermeable Area (ha)	0.750 0.840 1.480
	Variables FSR Rainfa Retum Perio Region	ll d (years) England and	100 1 Wales	Cv (Summer) Cv (Winter)	0.750
Aicro Jrainage	Variables FSR Rainfa Retum Perio	II d (years) England and M5-60 (mm)	100 1 Wales 20.000	Cv (Summer) Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge	0.750 0.840 1.480
Alcro Irainage Variables	Variables FSR Rainfa Retum Perio Region	ll d (years) England and	100 1 Wales	Cv (Summer) Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge	0.750 0.840 1.480
Variables Results	Variables FSR Rainfa Retum Perio Region	II d (years) England and M5-60 (mm)	100 1 Wales 20.000	Cv (Summer) Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge (/s)	0.750 0.840 1.480 185.0
Variables Results Design	Variables FSR Rainfa Retum Perio Region	II d (years) England and M5-60 (mm)	100 1 Wales 20.000	Cv (Summer) Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge (/s) Infiltration Coefficient (m/hr)	0.750 0.840 1.480 185.0 0.00000
Variables Results Design	Variables FSR Rainfa Retum Perio Region	II d (years) England and M5-60 (mm)	100 1 Wales 20.000	Cv (Summer) Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge (/s) Infiltration Coefficient (m/hr) Safety Factor	0.750 0.840 1.480 185.0 0.00000 2.0
Variables Results Design Overview 2D Overview 3D	Variables FSR Rainfa Retum Perio Region	II d (years) England and M5-60 (mm)	100 1 Wales 20.000 0.446	Cv (Summer) Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge (/s) Infiltration Coefficient (m/hr) Safety Factor	0.750 0.840 1.480 185.0 0.00000 2.0 30

SE1 30 YEAR STORAGE

04.1	Results
vlicro Orainage	Global Variables require approximate storage of between 254 m ³ and 342 m ³ . These values are estimates only and should not be used for design purposes.
Variables	•
Results	
Design	
Overview 2D	
Overview 3D	
Vi	
	Analyse OK Cancel Help

	Variables						
Micro Drainage	FSR Rainfall			•	Cv (Summer)	0.750	Ĩ
utalinage	Return Period	(years)	30		Cv (Winter)	0.840	
Variables	Region	England and	Wales	•	Impermeable Area (ha) Maximum Allowable Discharge	0.890	
Results	Мар	M5-60 (mm)	20.000		(/s)	Lauren	
Design		Ratio R	0.446		Infiltration Coefficient (m/hr)	0.00000	
Overview 2D					Safety Factor	2.0	
Overview 3D					Climate Change (%)	0]
Vt							
				Analy	rse OK Can	cel	Help

SE1 100 YEAR + 30% STORAGE

vicro Drainage	Results Global Variables require approximate storage of between 489 m³ and 636 m³. These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help

4	Variables						
MINTER	FSR Rainfa	H		-	Cv (Summer)	0.750	
Orainage	Return Perio	d (years)	100		Cv (Winter)	0.840	
1000-51100	HUMAN	Paramana	CHICKEN SER	28640	Impermeable Area (ha)	0.890	
Variables	Region	England and	Wales		Maximum Allowable Discharge (//s)	4,4	
Results	Мар	M5-60 (mm)	20,000		w.s,		
Design		Ratio R	0.446		Infiltration Coefficient (m/hr)	0.00000	8
Overview 2D					Safety Factor	2.0	
Overview 3D	1				Climate Change (%)	30	
Vt							
				Analy	rse OK Cano	cel Help)

SE2 30 YEAR STORAGE

Vicro Vicro Drainage	Results Global Variables require approximate storage of between 313 m³ and 421 m³. These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
Vi	
	Analyse OK Cancel Help

4	Variables						
MIEro	FSR Rainfall 👻				Cv (Summer)	0.750	
Drainage	Return Period (years) 30				Cv (Winter)	0.840	
	3400393	-	100000000	563	Impermeable Area (ha)	1.098	
Variables	Region	England and	d Wales 🔹 👻		Maximum Allowable Discharge	5.5	
Results	Мар	M5-60 (mm)	20.000		(l/s)		
Design		Ratio R	0.446		Infiltration Coefficient (m/hr)	0.00000	
Overview 2D					Safety Factor	2.0	
Overview 3D	-				Climate Change (%)	0)
Vt							
				Analy	rse OK Can	cel	Help

SE2 100 YEAR + 30% STORAGE

vicro Vicro Vrainage	Results Global Variables require approximate storage of between 601 m ³ and 782 m ³ .
Variables	These values are estimates only and should not be used for design purposes.
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help

RN.

La	Variables					
vicro Drainage	FSR Rainfall				Cv (Summer)	0.750
namaye	Return Period	(years)	100	- 11	Cv (Winter)	0.840
	2	-			Impermeable Area (ha)	1.098
Variables	Region	England and	Wales	•	Maximum Allowable Discharge	5.5
Results	Мар	M5-60 (mm)	20.000	1	(l/s)	
Design		Ratio R	0.446		Infiltration Coefficient (m/hr)	0.00000
Overview 2D					Safety Factor	2.0
Overview 3D					Climate Change (%)	30
Vł						
				Analy	se OK Cano	el Help

SW1 30 YEAR STORAGE

4	Results					
Micro Drainage	of between	iables require n 73 m³ and 1 ues are estim	106 m³.	le storage Id should not be used for desi	gn purposes	5.
Variables						
Results						
Design						
Overview 2D						
Overview 3D						
Vt						
Quick Storage	Estimate					9 (
Ly m	Estimate Variables					I (
U.C.)			0.750	9)(:
Quick Storage Micro Nainage	Variables		30	Cv (Winter)	0.750	9)(:
Alcro Nainage	Variables FSR Rainfal		30	Cv (Winter) Impermeable Area (ha)	0.750 0.840 0.383	
Variables	Variables FSR Rainfal Return Period Region	d (years)	30	Cv (Winter) Impermeable Area (ha)	0.750	
Variables Results	Variables FSR Rainfal Return Period	d (years) England and	30 I Wales 🗣	Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge (/s)	0.750 0.840 0.383 7.2	
Variables Results Design	Variables FSR Rainfal Return Period Region	d (years) England and M5-60 (mm)	30 I Wales • 20.000	Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge (l/s) Infiltration Coefficient (m/hr)	0.750 0.840 0.383 7.2 0.00000	
Variables Results	Variables FSR Rainfal Return Period Region	d (years) England and M5-60 (mm)	30 I Wales • 20.000	Cv (Winter) Impernieable Area (ha) Maximum Allowable Discharge (l/s) Infiltration Coefficient (m/hr) Safety Factor	0.750 0.840 0.383 7.2 0.00000 2.0	
Variables Results Design	Variables FSR Rainfal Return Period Region	d (years) England and M5-60 (mm)	30 I Wales • 20.000	Cv (Winter) Impermeable Area (ha) Maximum Allowable Discharge (l/s) Infiltration Coefficient (m/hr)	0.750 0.840 0.383 7.2 0.00000	
Variables Results Design	Variables FSR Rainfal Return Period Region	d (years) England and M5-60 (mm)	30 I Wales • 20.000	Cv (Winter) Impernieable Area (ha) Maximum Allowable Discharge (l/s) Infiltration Coefficient (m/hr) Safety Factor	0.750 0.840 0.383 7.2 0.00000 2.0	

SW1 100 YEAR + 30% STORAGE

	Results
Alcro Irainage	Global Variables require approximate storage of between 150 m ³ and 204 m ³ . These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help

1 32	Variables						
Micro Drainage	FSR Rainfall	i.	8	•	Cv (Summer)	0.750	
hamaye	Return Period	(years)	100	5	Cv (Winter)	0.840	
	- 32				Impermeable Area (ha)	0.383	
Variables	Region	England and	Wales	•	Maximum Allowable Discharge	7.2	
Results	Мар	M5-60 (mm)	20.000		(l/s)		
Design		Ratio R	0.446		Infiltration Coefficient (m/hr)	0.00000	
Overview 2D					Safety Factor	2.0	
Overview 3D					Climate Change (%)	30	
Vł							
			Ar	aly	se OK Cano	el	Help